如圖,三棱柱的各棱長均為2,側棱與底面所成的角為,為銳角,且側面⊥底面,給出下列四個結論:

;
;
③直線與平面所成的角為;
.
其中正確的結論是( )
A.①③B.②④C.①③④D.①②③④
C.

試題分析:如圖過,為垂足,連結,如圖建立空間直角坐標系,①:∵側棱與底面所成的角為,為銳角,側面⊥底面,∴,又由三棱柱各棱長相等,可知四邊形為菱形,∴,∴①正確;②:易知,,,,∴,∴②錯誤;③:由題意得即為與平面所成的角,
,∴③正確;④:由②,,,∴,∴,∴④正確.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直四棱柱中,底面是矩形,,,是側棱的中點.

(1)求證:平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

試在直線x-y+4=0上求一點P,使它到點M(-2,-4)、N(4,6)的距離相等.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,O是半徑為l的球心,點A、B、C在球面上,
OA、OB、OC兩兩垂直,E、F分別是大圓弧AB與AC的中點,
則點E、F在該球面上的球面距離是
(A)       (B)           (C)          (D) 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間上的兩點A(-1,2,1)、B(-2,0,3),以AB為體對角線構造一個正方體,則該正方體的體積為(  )
A.3B.2
3
C.9D.3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A(1-t,1,t),B(2,t,t)(t∈R),則A,B兩點間距離的最小值是( 。
A.
2
B.2C.
2
2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,ABCD-A1B1C1D1是棱長為6的正方體,E,F(xiàn)分別是棱AB,BC上的動點,且AE=BF.當A1,E,F(xiàn),C1共面時,平面A1DE與平面C1DF所成二面角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)·(2b)=-2,則x=________.

查看答案和解析>>

同步練習冊答案