已知△ABC的角A、B、C所對的邊長分別為a,b,c,周長為6,且sin2B=sinA•sinC,
(1)求角B的最大值;
(2)求△ABC的面積S的最大值.
分析:(1)根據(jù)正弦定理和余弦定理求角B即可.
(2)利用三角形的面積公式結(jié)合基本不等式進行求解.
解答:解:(1)∵sin2B=sinA•sinC,∴b2=ac.
在△ABC中得cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2
,
又B∈(0.π)故有0<B≤
π
3

∴當(dāng)a=c=b時,角B取最大值且為
π
3

(2)由題a+b+c=6,得a+c=6-b,
b=
ac
a+c
2
=
6-b
2
,從而0<b≤2,
由(1)知0<B≤
π
3
且兩等號同時成立S=
1
2
acsinB=
1
2
b2sinB≤
1
2
22•sin
π
3
=
3

Smax=
3
點評:本題主要考查正弦定理和余弦定理的應(yīng)用,以及三角形的面積公式的計算,考查學(xué)生的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量
m
=(a,b)
,
n
=(sinB,sinA)
,
p
=(b-2,a-2)

(1)若
m
n
,求證:△ABC為等腰三角形;
(2)若
m
p
,邊長c=2,角C=
π
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A,B,C所對的邊分別是a,b,c,設(shè)向量
m
=(a,b),
n
=(sinB,sinA),
p
=(b-2,a-2).
(1)若
m
n
,試判斷△ABC的形狀并證明;
(2)若
m
p
,邊長c=2,∠C=
π
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin2x-1,cosx),n=(
1
2
,cosx),設(shè)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的最小正周期及在[0,
π
2
]上的最大值;
(2)已知△ABC的角A、B、C所對的邊分別為a、b、c,A、B為銳角,f(A+
π
6
)=
3
5
,f(
B
2
-
π
12
)=
10
10
,又a+b=
2
+1,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A,B,C所對的邊a,b,c,且acosC+
12
c=b

(1)求角A的大;
(2)若a=1,求b+c的最大值并判斷這時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的角A,B,C的對邊依次為a,b,c,若滿足
3
tanA•tanB-tanA-tanB=
3
,
(Ⅰ)求∠C大小;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a2+b2取值范圍.

查看答案和解析>>

同步練習(xí)冊答案