【題目】下列說法正確的個(gè)數(shù)有(

1)在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)為,則點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為.

2.

319084187的最大公約數(shù)是53.

4)用秦九韶算法計(jì)算多項(xiàng)式,當(dāng)時(shí)的值.

5)古代五行學(xué)說認(rèn)為:物質(zhì)分金,木,土,水,火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,設(shè)事件A表示排列中屬性相克的兩種物質(zhì)不相鄰,則事件A的概率為.

A.2B.3C.4D.5

【答案】A

【解析】

求出的坐標(biāo),可判斷(1);都轉(zhuǎn)化為十進(jìn)制數(shù),可判斷(2);求出最大公約數(shù),

可判斷(3);求出的值,可判斷(4);求出概率,可判斷(5.

(1)在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)為

則點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為,故(1)錯(cuò)誤.

2,故(2)錯(cuò)誤.

3,

兩個(gè)整數(shù)19084187的最大公約數(shù)是53,故(3)正確.

4)用秦九韶算法計(jì)算多項(xiàng)式

,

當(dāng)時(shí)的值,故(4)錯(cuò)誤.

5)古代五行學(xué)說認(rèn)為:物質(zhì)分金,木,土,水,火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,共有種不同的方法,

設(shè)事件A表示排列中屬性相克的兩種物質(zhì)不相鄰,則有種不同的方法,則事件A 的概率為,故(5)正確.

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好踢毽子,得到如下的列聯(lián)表:

隨機(jī)變量經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測(cè)值k0≈4.762,參照附表,得到的正確結(jié)論是(  )

A. 在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

C. 有97.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 有97.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),

(1)求上的解析式;

(2)若,函數(shù),是否存在實(shí)數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),對(duì)任意實(shí)數(shù),均滿足,且,數(shù)列,滿足,,則下列說法正確的有_____

①數(shù)列為等比數(shù)列;

②數(shù)列為等差數(shù)列;

③若為數(shù)列的前n項(xiàng)和,則;

④若為數(shù)列{}的前項(xiàng)和,則;

⑤若為數(shù)列{}的前項(xiàng)和,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體是圓錐的一部分,它是RtABC(及其內(nèi)部)以一條直角邊AB所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)150°得到的,ABBC2,P是弧上一點(diǎn),且EBAP.

1)求∠CBP的大小;

2)若QAE的中點(diǎn),D為弧的中點(diǎn),求二面角QBDP的余弦值;

3)直線AC上是否存在一點(diǎn)M,使得B、DM、Q四點(diǎn)共面?若存在,請(qǐng)說明點(diǎn)M的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間及極值;

2)若函數(shù)上有唯一零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C:的左、右項(xiàng)點(diǎn)分別為A1,A2,左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標(biāo)原點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)過點(diǎn)P(4,m)的直線PA1,PA2與橢圓分別交于點(diǎn)M,N,其中m>0,求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】01,23,4,56,7,89組成沒有重復(fù)數(shù)字的五位數(shù),且是奇數(shù),其中恰有兩個(gè)數(shù)字是偶數(shù),則這樣的五位數(shù)的個(gè)數(shù)為( ).

A.7200B.6480C.4320D.5040

查看答案和解析>>

同步練習(xí)冊(cè)答案