精英家教網 > 高中數學 > 題目詳情

【題目】如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個等腰梯形及它的內切圓,俯視圖中有兩個邊長分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個正方形的中心.問該幾何體的體積是(
A.
B.
C.
D.

【答案】B
【解析】解:由三視圖可知:幾何體為一個正四棱臺挖去一個球, ∵俯視圖中有2個邊長分別為2和8的正方形.
∴主視圖的等腰梯形的上底為2,下底為8,
又等腰梯形有內切圓,故易得等腰梯形的高為4,即球的半徑為2,
∴V正四棱臺= ×4×(22+82+8×2)=112,V= π23=
∴幾何體的體積是112﹣ =
故選:B
由三視圖可知:幾何體為一個正四棱臺挖去一個球,代入體積公式計算.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且,.設,四邊形的面積為(單位:平方米).

(1)求關于的函數關系式,求出定義域;

(2)當的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統,以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應買多少臺?

(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少百分之幾?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;

〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點.
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP ,并指出P和Q滿足什么條件時有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為實數.

(1)若曲線在點處的切線方程為,試求函數的單調區(qū)間;

(2)當,,且時,若恒有,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=(m2m-1)·是冪函數,對任意x1x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求的單調區(qū)間;

(Ⅱ)若,若對任意,存在,使得 成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案