如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使EF//AB且,得一簡單組合體如圖(2)所示,已知分別為的中點(diǎn).
圖(1) 圖(2)
(Ⅰ)求證:平面;
(Ⅱ)求證:平面.
(Ⅰ)證明:連結(jié),由為中點(diǎn),
在中,為中點(diǎn),得,平面;
(Ⅱ)先證,
再由平行四邊形、勾股定理證明,推出平面。
解析試題分析:(Ⅰ)證明:連結(jié),∵四邊形是矩形,為中點(diǎn),
∴為中點(diǎn),
在中,為中點(diǎn)
∴
∵平面,平面
平面 4分
(Ⅱ)證明:依題意知 且
∴平面 6分
∵平面
∴ 7分
∵為中點(diǎn),∴
結(jié)合,知四邊形是平行四邊形 9分
∴,
而,
∴ ∴,即 11分
又
∴平面 12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系。
點(diǎn)評:中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在底面是直角梯形的四棱錐S-ABCD中,
(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正四棱錐中,底面是邊長為2的正方形,側(cè)棱,為的中點(diǎn),是側(cè)棱上的一動點(diǎn)。
(1)證明:;
(2)當(dāng)直線時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,
(1)若為的中點(diǎn),求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,PD⊥平面ABCD,PD=AB=2, E,F,G分別是PC,PD,BC的中點(diǎn).
(1)求三棱錐E-CGF的體積;
(2)求證:平面PAB//平面EFG;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.
(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com