3.方程(x-1)ex=1的解的個數(shù)為1.

分析 由(x-1)ex=1得x-1=e-x,作函數(shù)y=x-1與y=e-x的圖象,從而利用數(shù)形結合求解即可.

解答 解:∵(x-1)ex=1,
∴x-1=e-x,
作函數(shù)y=x-1與y=e-x的圖象如下,
,
∵函數(shù)的圖象的交點有一個,
∴方程(x-1)ex=1的解的個數(shù)為1,
故答案為:1.

點評 本題考查了方程的根與函數(shù)的零點的關系,同時考查了數(shù)形結合的思想應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.設a=0.32,b=log20.3,c=20.3,則a,b,c從大到小的排列順序是c>a>b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知${a_1}=1,{a_n}+{a_{n+1}}={({\frac{1}{2}})^n}$,令Tn=a1+2a2+22a3+…+2n-1an,類比教材中求等比數(shù)列的前n項和的方法,可得3Tn-2nan=2n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=-$\frac{a}{π}$sinπx,且$\lim_{h→0}\frac{f(1+h)-f(1)}{h}$=2,則a的值為( 。
A.-2B.2C.D.-2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設x>0,y>0,若log23是log2x與log2y的等差中項,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$,方程f2(x)-bf(x)=0,b∈(0,1),則方程的根的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于函數(shù)f(x)=x|3x-x2|+1,有( 。
A.極大值為f(2)=5,極小值為f(3)=1,f(-1)=-3
B.極大值為f(2)=5,極小值為f(3)=f(0)=1
C.極大值為f(2)=5,極小值為f(3)=1
D.極大值為f(2)=5,極小值為f(0)=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知數(shù)列{an},{bn},{cn}滿足:an=n+p,bn=36-n,cn=$\left\{\begin{array}{l}{{a}_{n},{a}_{n}≤_{n}}\\{_{n},{a}_{n}>_{n}}\end{array}\right.$,數(shù)列{cn}中的最大項僅為c5,且c5=a5,則實數(shù)p的取值范圍是(-5,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,在(0,+∞)上為減函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=$\frac{1}{x-1}$C.y=log0.5xD.y=ex

查看答案和解析>>

同步練習冊答案