6.二戰(zhàn)中盟軍為了知道德國(guó)“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報(bào)竊取,一種是用統(tǒng)計(jì)學(xué)的方法進(jìn)行估計(jì),統(tǒng)計(jì)學(xué)的方法最后被證實(shí)比傳統(tǒng)的情報(bào)收集更精確,德國(guó)人在生產(chǎn)坦克時(shí)把坦克從1開(kāi)始進(jìn)行了連續(xù)編號(hào),在戰(zhàn)爭(zhēng)期間盟軍把繳獲的“虎式”坦克的編號(hào)進(jìn)行記錄,并計(jì)算出這些編號(hào)的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個(gè)隨機(jī)樣本,則利用你所學(xué)過(guò)的統(tǒng)計(jì)知識(shí)估計(jì)德國(guó)共制造“虎式”坦克大約有( 。
A.1050輛B.1350輛C.1650輛D.1950輛

分析 由題意$\frac{1+2+…+n}{n}$=675.5,即可得出結(jié)論.

解答 解:由題意$\frac{1+2+…+n}{n}$=675.5,
∴n=1350,
故選B.

點(diǎn)評(píng) 本題考查統(tǒng)計(jì)知識(shí)的運(yùn)用,考查平均數(shù)的計(jì)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且acosB+bcosA=$\sqrt{3}$,△ABC的外接圓面積為π,則△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(x-1),a∈R.
(Ⅰ)求函數(shù)f(x)在點(diǎn)(1,f(1))點(diǎn)處的切線方程;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≤$\frac{lnx}{x+1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax+x2-xlna(a>1),x∈[-1,1].
(1)證明:f(0)是f(x)的極小值;
(2)對(duì)任意x1,x2∈[-1,1],使得|f(x1)-f(x2)|≤e-1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點(diǎn)的交點(diǎn)M處的切線為l1,g(x-1)與x軸的交點(diǎn)N處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知t∈R,求函數(shù)y=f[g(x)+t],x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),x∈(1,+∞),x2>x1>1,對(duì)于兩個(gè)大于1的實(shí)數(shù)α,β滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,m∈(0,1).
求證:|F(α)-F(β)|<|F(x1)-F(x2)|成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.《最強(qiáng)大腦》是江蘇衛(wèi)視推出國(guó)內(nèi)首檔大型科學(xué)類真人秀電視節(jié)目,該節(jié)目集結(jié)了國(guó)內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力也組織了一場(chǎng)類似《最強(qiáng)大腦》的PK賽,A、B兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分,假設(shè)每局比賽兩隊(duì)選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨(dú)立.
(1)求比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率;
(2)求比賽結(jié)束時(shí)B隊(duì)得分X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題是真命題的是( 。
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,0),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為2
D.“|x|≤1”是“x≤1”的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$),若存在x1,x2,…xn滿足0≤x1<x2<…<xn≤4π,且|f(x1)-f(x2)|+|f(2)-f(x3)|+…+|f(xn-1)-f(xn)|=16(n≥2,n∈N*),則n的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足(a-b)(sinA+sinB)=(c-b)sinC,若$a=\sqrt{3}$,則b2+c2的取值范圍是( 。
A.(5,6]B.(3,5)C.(3,6]D.[5,6]

查看答案和解析>>

同步練習(xí)冊(cè)答案