一條雙曲線的兩條準(zhǔn)線將兩焦點間的距離三等分, 則這雙曲線的離心率是

[  ]

A.   B.   C.   D. 

答案:D
解析:

解: ∵

即 3a2=c2

∴ 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出4個命題:
(1)設(shè)橢圓長軸長度為2a(a>0),橢圓上的一點P到一個焦點的距離是
2
3
a
,P到一條準(zhǔn)線的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數(shù))的準(zhǔn)線上任意一點到兩焦點的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內(nèi)動點M到定直線l的距離與M到定點F的距離之比大于1,那么動點M的軌跡是雙曲線.
(4)過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準(zhǔn)線上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號依次是
(2)(4)
(2)(4)
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•海淀區(qū)二模)設(shè)雙曲線:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條準(zhǔn)線與兩條漸近線交于A、B兩點,其相應(yīng)的焦點為F,若∠AFB=90°,則雙曲線的離心率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•重慶模擬)已知雙曲線C1的漸近線方程是y=±x,且它的一條準(zhǔn)線與漸近線y=x及x軸圍成的三角形的周長是
2
+1

(I)求以C1的兩個頂點為焦點,以C1的焦點為頂點的橢圓C2的方程;
(II)AB是橢圓C2的長為
2
的動弦,O為坐標(biāo)原點,求△OAB的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃岡重點作業(yè)·高三數(shù)學(xué)(下) 題型:013

已知雙曲線的兩條準(zhǔn)線間的距離的4倍恰為該雙曲線的焦距的長,則這一雙曲線的離心率是

[  ]

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案