分析 求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0解出其增區(qū)間,令導(dǎo)數(shù)小于0解出其減區(qū)間,并列出如圖的x變化時,f'(x),f(x)變化表由表中數(shù)據(jù)以及端點的函數(shù)值,判斷最值即可
解答 解:f'(x)=6x2-12x
令f'(x)=0有x=0或x=2
當(dāng)x變化時,f'(x),f(x)變化如下
x | [-2,0) | 0 | (0,2) | 2 | (2,4] |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 3 | ↘ | -5 | ↗ |
點評 本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求解的關(guān)鍵是利用導(dǎo)數(shù)研究清楚函數(shù)的單調(diào)性以及根據(jù)最值的判斷方法確定出函數(shù)的最值,此題規(guī)律性強(qiáng),且固定,容易題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 7 | 6 | 5 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{(n+1)^{2}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{2}{{2}^{n}-1}$ | D. | $\frac{2}{2n-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y-1=0 | B. | x-2y+7=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com