【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的極坐標(biāo)方程;

2)將曲線上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來的倍,得到曲線,若的交點(diǎn)為(異于坐標(biāo)原點(diǎn)),的交點(diǎn)為,求

【答案】(1) (2)1

【解析】

1)直接把曲線參數(shù)方程中的參數(shù)消去,可得曲線的普通方程,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的極坐標(biāo)方程(2)由圖象變換可得曲線C3的方程,進(jìn)一步得到曲線C3的極坐標(biāo)方程,把分別代入兩極坐標(biāo)方程求得A,B的極徑,作差可得|AB|

1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù)

可得的普通方程為,代入,

可得的極坐標(biāo)方程為

2)由題意可得曲線,將代入,

化簡得的極坐標(biāo)方程為

分別代入

兩點(diǎn)的極徑

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:在區(qū)間上有且僅有個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足條件:存在正整數(shù),使得對一切都成立,則稱數(shù)列級等比數(shù)列;

1)已知數(shù)列2級等比數(shù)列,且前四項分別為、、,求的值;

2)若為常數(shù)),且數(shù)列3級等比數(shù)列,求所有可能的值,并求取最小正值時數(shù)列的前項和;

3)證明:正數(shù)數(shù)列為等比數(shù)列的充要條件是數(shù)列既為2級等比數(shù)列,也為3級等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下命題:

若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域為{0};

若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);

若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);

若函數(shù)fx)存在反函數(shù)f1x),且f1x)與fx)不完全相同,則fx)與f1x)圖象的公共點(diǎn)必在直線y=x上;

其中真命題的序號是 .(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海特區(qū)為了緩解建設(shè)用地不足的矛盾,決定進(jìn)行圍海造陸以增加陸地面積.如圖,兩海岸線所成角為,現(xiàn)欲在海岸線,上分別取點(diǎn)修建海堤,以便圍成三角形陸地,已知海堤長為6千米.

1)如何選擇,的位置,使得的面積最大;

2)若需要進(jìn)一步擴(kuò)大圍海造陸工程,在海堤的另一側(cè)選取點(diǎn),修建海堤,圍成四邊形陸地.當(dāng)海堤的長度之和為10千米時,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 C 經(jīng)過點(diǎn) (2,3),它的漸近線方程為 y = ±.橢圓 C1與雙曲線 C有相同的焦點(diǎn),橢圓 C1的短軸長與雙曲線 C 的實軸長相等.

1)求雙曲線 C 和橢圓 C1 的方程;

2)經(jīng)過橢圓 C1 左焦點(diǎn) F 的直線 l 與橢圓 C1 交于 A、B 兩點(diǎn),是否存在定點(diǎn) D ,使得無論 AB 怎樣運(yùn)動,都有∠ADF = BDF ?若存在,求出 D 點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),如果存在給定的實數(shù)對,使得恒成立,則稱函數(shù)

(1) 判斷函數(shù)是否是函數(shù)

(2) 是一個函數(shù),求出所有滿足條件的有序?qū)崝?shù)對;

(3) 若定義域為R的函數(shù)函數(shù),且存在滿足條件的有序?qū)崝?shù)對(0,1)(1,4),當(dāng)x[0,1]時,的值域為[1,2],求當(dāng)x[2016,2016]時函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中(圖1),,,為線段上的點(diǎn),且.為折線,把翻折,得到如圖2所示的圖形,的中點(diǎn),且,連接.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體ABCD的三組對棱分別相等,即,,,給出下列結(jié)論:

①四面體ABCD每組對棱相互垂直;

②四面體ABCD每個面的面積相等;

③從四面體ABCD每個頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于而小于

④連接四面體ABCD每組對棱中點(diǎn)的線段相互垂直平分;

⑤從四面體ABCD每個頂點(diǎn)出發(fā)的三條棱的長可作為一個三角形的三邊長.

其中正確結(jié)論的序號是(

A.②④⑤B.①②④⑤C.①③④D.②③④⑤

查看答案和解析>>

同步練習(xí)冊答案