已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點(diǎn).

(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點(diǎn)D到平面AEC的距離.

(Ⅰ)詳見(jiàn)解析; (Ⅱ) 點(diǎn)D到平面AEC的距離為

解析試題分析:(Ⅰ)求證EO⊥平面ABCD,只需證明垂直平面內(nèi)的兩條直線(xiàn)即可,注意到,則為等腰直角三角形,的中點(diǎn),從而得,由已知可知為邊長(zhǎng)為2的等邊三角形,可連接CO,利用勾股定理,證明EO⊥CO,利用線(xiàn)面垂直的判定,可得EO⊥平面ABCD;(Ⅱ)求點(diǎn)D到平面AEC的距離,求點(diǎn)到平面的距離方法有兩種,一.垂面法,二.等體積法,此題的體積容易求,且的面積也不難求出,因此可利用等體積,即,從而可求點(diǎn)D到面AEC的距離.
試題解析:(Ⅰ)連接CO.                       
,∴△AEB為等腰直角三角形.              1分
∵O為AB的中點(diǎn),∴EO⊥AB,EO=1.                            2分
又∵四邊形ABCD是菱形,∠ABC=60°,
∴△ACB是等邊三角形,
∴CO=.                                                     3分
又EC=2,∴EC2=EO2+CO2,∴EO⊥CO.                         4分
又CO?平面ABCD,EO平面ABCD,∴EO⊥平面ABCD.          6分
(Ⅱ)設(shè)點(diǎn)D到平面AEC的距離為h.
∵AE=,AC=EC=2,∴SAEC.                             8分
∵SADC,E到平面ACB的距離EO=1,VD-AEC=VE-ADC,         9分
∴SAEC·h=SADC·EO,∴h=,                                11分
∴點(diǎn)D到平面AEC的距離為.                                  12分
考點(diǎn):線(xiàn)線(xiàn)垂直的判定、線(xiàn)面垂直的判定,以及棱錐的體積公式,點(diǎn)到平面距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:;
⑵如果,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面為菱形,的中點(diǎn).

(1)若,求證:平面平面;
(2)點(diǎn)在線(xiàn)段上,,試確定的值,使平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線(xiàn)A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面底面,且,設(shè)分別為、的中點(diǎn).

(1)求證://平面;
(2)求證:面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四棱錐中,底面是個(gè)邊長(zhǎng)為的正方形,側(cè)棱底面,且,的中點(diǎn).

(I)證明:平面
(II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中, D是 AC的中點(diǎn)。

求證://平面 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

證明梯形是一個(gè)平面圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,的中點(diǎn).

(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案