16.計(jì)算:
(1)-3sin$\frac{π}{2}$+2cos0°+2cos$\frac{π}{3}$-tan2$\frac{π}{3}$+cosπ;
(2)$\frac{tan120°cos(-60°)sin(-765°)}{sin330°}$.

分析 (1)直接利用特殊角的三角函數(shù)求解即可.
(2)利用誘導(dǎo)公式以及特殊角的三角函數(shù),求解即可.

解答 解:(1)-3sin$\frac{π}{2}$+2cos0°+2cos$\frac{π}{3}$-tan2$\frac{π}{3}$+cosπ
=-3+2+1-3-1
=2;
(2)$\frac{tan120°cos(-60°)sin(-765°)}{sin330°}$
=$\frac{-tan60°cos(-60°)sin(-45°)}{-sin30°}$
=$-\frac{\sqrt{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$
=-$\frac{\sqrt{6}}{2}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)h(x)=lnx-x-$\frac{m}{x}$有兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(1)寫出函數(shù)h(x)的單調(diào)區(qū)間(用x1,x2表示,不需要說(shuō)明理由);
(2)如果函數(shù)F(x)=h(x)+$\frac{1}{2}$x在(1,b)上為增函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a,c是一元二次方程x2-7x+10=0的兩根,且a<b<c,△ABC的面積為4.
(1)求a,b,c的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=-3sin($\frac{π}{6}$-2x)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若f(x)=$\frac{1}{2}$x+alnx在(0,+∞)內(nèi)是增函數(shù).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.按下列條件,把x2+y2-2rx=0(r>0)化為參數(shù)方程:
(1)以曲線上的點(diǎn)與圓心的連線和x軸正方向的夾角φ為參數(shù);
(2)以曲線上的點(diǎn)與原點(diǎn)的連線和x軸正方向的夾角θ為參數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在正方體ABCD-A1B1C1D1中,E、F分別是棱AB,BC的中點(diǎn),O是底面ABCD的中心,求證EF⊥平面BB1O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.集合A={α|α=$\frac{nπ}{2}$,n∈Z}∪{α|α=2nπ±$\frac{2π}{3}$,n∈Z},B={β|β=$\frac{2}{3}$nπ,n∈Z}∪{β|β=nπ+$\frac{π}{2}$,n∈Z},求A與B的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,側(cè)棱與底面成60°角,點(diǎn)B1在底面上的射影D為BC的中點(diǎn),BC=2,二面角A-BB1-C為30°(如圖).
(1)求證:平面BCC1B1⊥平面ABC;
(2)求證:AC⊥面BCC1B1;
(3)求多面體A-BCC1B1的體積V;
(4)求AB1與平面ACC1A1所成角的正切.

查看答案和解析>>

同步練習(xí)冊(cè)答案