A. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$) | B. | ($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$] | C. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1] | D. | ($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1) |
分析 令f(x)>0,得到kx+4>$\frac{x}{lnx}$,令g(x)=$\frac{x}{lnx}$,集合函數(shù)圖象求出k的范圍即可.
解答 解:令f(x)>0,得:kx+4>$\frac{x}{lnx}$,
令g(x)=$\frac{x}{lnx}$,則g′(x)=$\frac{lnx-1}{{(lnx)}^{2}}$,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:1<x<e,
故g(x)在(1,e)遞增,在(e,+∞)遞減,
畫出函數(shù)草圖,如圖示:
,
結(jié)合圖象$\left\{\begin{array}{l}{2k+4>\frac{2}{ln2}}\\{3k+4≤\frac{3}{ln3}}\end{array}\right.$,解得:$\frac{1}{ln2}$-2<k≤$\frac{1}{ln3}$-$\frac{4}{3}$,
故選:B.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用以及數(shù)形結(jié)合思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,-1)∪(3,+∞) | C. | (-4,2) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | [-1,0] | C. | (-1,-$\frac{1}{3}$) | D. | [-1,-$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com