分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,求出函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的極值點(diǎn)的個(gè)數(shù),確定m的范圍即可.
解答 解:(Ⅰ)f′(x)=$\frac{2}{x+1}$+mx-(2m+1),
由已知得,f′(1)=1-m=0,m=1,
此時(shí)f′(x)=$\frac{(x-1)(x-2)}{x}$,
由f′(x)=0,得x=1或x=2,
隨x的變化f′(x)、f(x)的變化情況如下:
x | (0,1) | 1 | (1,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
x | (0,2) | 2 | (2,$\frac{1}{m}$) | $\frac{1}{m}$ | ($\frac{1}{m}$,+∞) |
f′(x)) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
x | (0,$\frac{1}{m}$) | $\frac{1}{m}$ | ($\frac{1}{m}$,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)>f(e)>f(3) | B. | f(3)>f(e)>f(2) | C. | f(3)>f(2)>f(e) | D. | f(e)>f(3)>f(2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30m | B. | 40m | C. | $40\sqrt{3}$m | D. | $40\sqrt{2}$m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com