【題目】過橢圓W:的左焦點(diǎn)作直線交橢圓于兩點(diǎn),其中 ,另一條過的直線交橢圓于兩點(diǎn)(不與重合),且點(diǎn)不與點(diǎn)重合.軸的垂線分別交直線,,.

(Ⅰ)求點(diǎn)坐標(biāo)和直線的方程;

(Ⅱ)求證:.

【答案】(Ⅰ),的方程為;(Ⅱ)詳見解析.

【解析】

(Ⅰ)由題意可得直線的方程為.與橢圓方程聯(lián)立方程組,即可求解B點(diǎn)坐標(biāo);

(Ⅱ)設(shè),的方程為,聯(lián)立方程組,根據(jù)根與系數(shù)的關(guān)系,求得,,進(jìn)而得出點(diǎn)的縱坐標(biāo),化簡(jiǎn)即可證得,得到證明.

)由題意可得直線的方程為.與橢圓方程聯(lián)立,由

可求.

(Ⅱ)當(dāng)軸垂直時(shí)兩點(diǎn)與,兩點(diǎn)重合,由橢圓的對(duì)稱性,.

當(dāng)不與軸垂直時(shí),

設(shè),的方程為).

消去,整理得.

,.

由已知,,

則直線的方程為,得點(diǎn)的縱坐標(biāo).把代入得.

由已知,,則直線的方程為,,得點(diǎn)的縱坐標(biāo).把代入得.

,代入到,

=.

,..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,給出下列命題:

,則;   ,則

,則;   ,則.

其中正確命題的序號(hào)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請(qǐng)判斷直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年國(guó)際象棋奧林匹克團(tuán)體賽中國(guó)男隊(duì)、女隊(duì)同時(shí)奪冠.國(guó)際象棋中騎士的移動(dòng)規(guī)則是沿著3×2格或2×3格的對(duì)角移動(dòng).在歷史上,歐拉、泰勒、哈密爾頓等數(shù)學(xué)家研究了“騎士巡游”問題:在格的黑白相間的國(guó)際象棋棋盤上移動(dòng)騎士,是否可以讓騎士從某方格內(nèi)出發(fā)不重復(fù)地走遍棋盤上的每一格?

圖(一)給出了騎士的一種走法,它從圖上標(biāo)1的方格內(nèi)出發(fā),依次經(jīng)過標(biāo)2,3,4,5,6,,到達(dá)標(biāo)64的方格內(nèi),不重復(fù)地走遍棋盤上的每一格,又可從標(biāo)64的方格內(nèi)直接走回到標(biāo)1的方格內(nèi).如果騎士的出發(fā)點(diǎn)在左下角標(biāo)50的方格內(nèi),按照上述走法,_____(填“能”或“不能”)走回到標(biāo)50的方格內(nèi).

若騎士限制在圖(二)中的3×4=12格內(nèi)按規(guī)則移動(dòng),存在唯一一種給方格標(biāo)數(shù)字的方式,使得騎士從左上角標(biāo)1的方格內(nèi)出發(fā),依次不重復(fù)經(jīng)過2,3,4,5,6,,到達(dá)右下角標(biāo)12的方格內(nèi),分析圖(二)中A處所標(biāo)的數(shù)應(yīng)為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)2xg(x)2x的圖象如圖所示,設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1y1),B(x2,y2),且x1x2.

1)請(qǐng)指出圖中曲線C1,C2分別對(duì)應(yīng)的函數(shù);

2)結(jié)合函數(shù)圖象,判斷,f(2 019)g(2 019)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購(gòu)物滿元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:一個(gè)袋子裝有只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎(jiǎng)勵(lì)元;共兩只球都是綠色,則獎(jiǎng)勵(lì)元;若兩只球顏色不同,則不獎(jiǎng)勵(lì).

(1)求一名顧客在一次摸獎(jiǎng)活動(dòng)中獲得元的概率;

(2)記為兩名顧客參與該摸獎(jiǎng)活動(dòng)獲得的獎(jiǎng)勵(lì)總數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)過原點(diǎn)的直線被圓所截得的弦長(zhǎng)為2,求直線的方程;

(2)外的一點(diǎn)向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),若,求使最短時(shí)的點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案