【題目】某中學(xué)從參加高一年級上學(xué)期期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計這次考試的及格率(60分及以上為及格).
(2)從成績是70分以上(包括70分)的學(xué)生中選一人,求選到第一名學(xué)生的概率(第一名學(xué)生只一人).
【答案】(1) 75%.(2)P=.
【解析】(I)60及60分以上對應(yīng)的區(qū)間有[60,70],[70,80],[80,90],[90,100]對應(yīng)這四個區(qū)間上矩形的面積和就是所求答案。
(II)先求出70分(包括70分)的學(xué)生有36人,所以選到第一名的概率為.
解:(Ⅰ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,
頻率和為,
所以,抽樣學(xué)生成績的合格率是% . .............6分
(Ⅱ), , ”的人數(shù)是18,15,3. ―――9分
所以從成績是70分以上(包括70分)的學(xué)生中選一人,
選到第一名的概率. ……………………12分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,5世紀(jì)末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖出一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( 。
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一片成熟森林的總面積為 (近期內(nèi)不再種植),計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時,所用時間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個臭皮匠頂上一個諸葛亮,能頂?shù)蒙蠁?在一次有關(guān)“三國演義”的知識競賽中,三個臭皮匠A、B、C能答對題目的概率分別為P(A)=,P(B)=,P(C)=,諸葛亮D能答對題目的概率為P(D)=,如果將三個臭皮匠A、B、C組成一組與諸葛亮D比賽,答對題目多者為勝方,問哪方勝?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn), 兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品5件和類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品6件和類產(chǎn)品20件.已知設(shè)備甲每天的租賃費為300元,設(shè)備乙每天的租賃費為400元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品50件, 類產(chǎn)品140件,則所需租賃費最少為__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點的平面與棱, , 分別交于點, , (, , 三點均不在棱的端點處).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直線是否可能與平面平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)設(shè)為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;
(2)設(shè)為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求函數(shù)的極值;
(3)判斷在上的單調(diào)性,并加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com