【題目】已知函數(shù),其中.
(1)當時,求證: ;
(2)對任意,存在,使成立,求的取值范圍.(其中是自然對數(shù)的底數(shù), )
【答案】(1)見解析;(2)
【解析】試題分析:(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的最大值,證明結論即可;
(2)問題轉(zhuǎn)化為, 設,求導,利用單調(diào)性求范圍即可.
試題解析:
解:(1)當時, ,
則,令,得,
當時, , 單調(diào)遞增;當時, , 單調(diào)遞減,
故當時,函數(shù)取得極大值,也為最大值,所以,
所以,得證.
(2)原題即對任意,存在,使成立,
只需,
設,則,
令,則對于恒成立,
所以為上的增函數(shù),
于是,即對于恒成立,
所以為上的增函數(shù),則,
令,則,
當時, 為的減函數(shù),且其值域為,符合題意.
當時, ,由得,
由得,則在上為增函數(shù);由得,則在上為減函數(shù),所以,從而由,解得,綜上所述, 的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當,時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);
(3)若從數(shù)學成績在與兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線a上的所有點到兩條直線m、n的距離都相等,則稱直線a為“m、n的等距線”.在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別是所在棱中點,M、N分別為EH、FG中點,則在直線MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線”的條數(shù)為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)已知在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標為,判斷點與曲線的位置關系;
(2)設點是曲線上的一個動點,求它到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com