20.在△ABC中,已知AB=8,AC=6,點O為三角形的外心,則$\overrightarrow{BC}•\overrightarrow{OA}$=14.

分析 可分別取AB,AC的中點D,E,并連接OD,OE,據(jù)條件即可得出OD⊥AB,OE⊥AC,而$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,代入$\overrightarrow{BC}•\overrightarrow{OA}$進行數(shù)量積的計算即可求出該數(shù)量積的值.

解答 解:如圖,取AB中點D,AC中點E,連接OD,OE,則:
OD⊥AB,OE⊥AC;
∴$\overrightarrow{BC}•\overrightarrow{OA}=(\overrightarrow{AC}-\overrightarrow{AB})•\overrightarrow{OA}$
=$\overrightarrow{AC}•\overrightarrow{OA}-\overrightarrow{AB}•\overrightarrow{OA}$
=$|\overrightarrow{AC}||\overrightarrow{OA}|cos(π-∠OAE)$$-|\overrightarrow{AB}||\overrightarrow{OA}|cos(π-∠OAD)$
=$|\overrightarrow{AB}||\overrightarrow{OA}|cos∠OAD-|\overrightarrow{AC}||\overrightarrow{OA}|cos∠OAE$
=$\frac{1}{2}|\overrightarrow{AB}{|}^{2}-\frac{1}{2}|\overrightarrow{AC}{|}^{2}$
=32-18
=14.
故答案為:14.

點評 考查三角形外心的概念及性質(zhì),余弦函數(shù)的定義,以及向量減法的幾何意義,向量數(shù)量積的運算及計算公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系xOy中,直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),與曲線C:$\left\{\begin{array}{l}{x=4{k}^{2}}\\{y=4k}\end{array}\right.$(k為參數(shù))交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)x∈R,若“|x-a|<1(a∈R)”是“x2+x-2>0”的充分不必要條件,則a的取值范圍是( 。
A.(-∞,-3]∪[2,+∞)B.(-∞,-3)∪(2,+∞)C.(-3,2)D.[-3,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若∠CAB=$\frac{π}{6}$,求三棱錐B1-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖,焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{1}{2}$,F(xiàn)、A分別是橢圓的一個焦點和頂點,P是橢圓上任意一點,則$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某單位為制定節(jié)能減排的計劃,隨機統(tǒng)計了某4天的用電量y(單位:度)與當天氣溫x(單位:°C),并制作了對照表(如表),由表中數(shù)據(jù),得線性回歸方程$\hat y=-2x+a$,當某天的氣溫為-5°C時,預測當天的用電量約為( 。
x181310-1
y24343864
A.65度B.68度C.70度D.72度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如表(單位:輛):
轎車A轎車B轎車C
舒適型100150z
標準型300450600
按分層抽樣的方法在這個月生產(chǎn)的A,B,C三類轎車中抽取50輛,其中有A類轎車10輛.
(Ⅰ)求z的值;
(Ⅱ)分別求從B,C類轎車中抽取的車輛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等比數(shù)列{an}的前n項和為Sn,a1+a3=30,S4=120,設(shè)bn=1+log3an,那么數(shù)列{bn}的前15項和為(  )
A.152B.135C.80D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-1|+|x+1|,M為不等式f(x)<4的解集.
(1)求M;
(2)證明:對?a,b∈M,|ab+4|>|a+b|.

查看答案和解析>>

同步練習冊答案