分析 設(shè)AB=BC=CA=2,設(shè)BP=x,0≤x≤2,過M作PM的垂線,交AC于R,當(dāng)Q落在線段AR內(nèi)部及A點(diǎn)上時(shí),P與Q是親密的,記AR的長度為y=f(x),由PM2+MR2=RP2及余弦定理得y=$\frac{3x}{1+x}$,由此利用定積分能求出正三角形的親密度.
解答 解:設(shè)AB=BC=CA=2,設(shè)BP=x,0≤x≤2,
過M作PM的垂線,交AC于R,當(dāng)Q落在線段AR內(nèi)部及A點(diǎn)上時(shí),P與Q是親密的,
記AR的長度為y=f(x),
由PM2+MR2=RP2及余弦定理得:
(x2-x+1)+[(2-y)2+(2-y)+1]=(2-x)2-(2-x)y+y2,
整理,得:y=$\frac{3x}{1+x}$,
∴正三角形的親密度為:
$\frac{1}{4}{∫}_{0}^{2}\frac{3x}{1+x}dx$=$\frac{3}{4}$${∫}_{0}^{2}\frac{x}{1+x}dx$=$\frac{3}{4}$[${∫}_{0}^{2}(1-\frac{1}{1+x})dx$]=$\frac{3}{4}$[x-ln(x+1)]${|}_{0}^{2}$=$\frac{6-3ln3}{4}$.
故答案為:$\frac{6-3ln3}{4}$.
點(diǎn)評(píng) 本題考查正三角形的親密度的求法,涉及到正三角形性質(zhì)、函數(shù)、定積分等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,考查創(chuàng)新意識(shí)、應(yīng)用意識(shí),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $16({π-\sqrt{3}})$ | B. | $16({π-\sqrt{2}})$ | C. | $8({2π-3\sqrt{2}})$ | D. | $8({2π-\sqrt{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 4 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com