19.已知函數(shù)f(x)=x2+mx+1,若對于任意的x∈R都有f(x)≥0恒成立,則實(shí)數(shù)m的取值范圍是[-2,2].

分析 不等式x2+mx+1≥0對于任意的x∈R均成立,只需△≤0即可求得m的取值范圍.

解答 解:∵不等式x2+mx+1≥0對于任意的x∈R均成立,
∴由△=m2-4≤0得:
∴-2≤m≤2,
故答案為:[-2,2].

點(diǎn)評 本題考查二次函數(shù)在R中的恒成立問題,可以通過判別式法予以解決,也可以分離參數(shù)m,分類討論解決,與前法相比較復(fù)雜,是容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校從參加高三期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),數(shù)學(xué)成績分組及樣本頻率分布表如下:
分組頻數(shù)頻率
[40,50)20.04
[50,60)30.06
[60,70)140.28
[70,80)15
[80,90)0.24
[90,100]40.08
合計(jì)
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué),已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}中,a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$(n∈N*),記Sn=a1+a2+…+an,若Sn=2016,則n=1344.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=24,b3S3=135.
(1)求an與bn
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,且|$\sqrt{2}$$\overrightarrow{AB}$+$\overrightarrow{BD}}$|=2,沿BD將四邊形折起成直二面角A-BD-C,則三棱錐A-BCD外接球的表面積為( 。
A.B.16πC.D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(1,-1),則$\overrightarrow{AB}$=(  )
A.(-2,3)B.(0,1)C.(-1,2)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)=-x3+bx+2在(1,+∞)上是減函數(shù),則b的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.(-∞,3]D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,直三棱柱ABC-A1B1C1中,AA1=$\sqrt{2}$AB=$\sqrt{2}$BC=2,∠ABC=90°,D為CC1中點(diǎn),則AB1與平面ABD所成角的正弦值是( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案