9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,則實數(shù)a的最大值為( 。
A.2B.4C.6D.8

分析 由x+2y≥a恒成立,可得a不大于x+2y的最小值,運用乘1法和基本不等式,可得x+2y的最小值為8,進而得到a的最大值.

解答 解:x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,可得
x+2y=(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=4+$\frac{x}{y}$+$\frac{4y}{x}$≥4+2$\sqrt{\frac{x}{y}•\frac{4y}{x}}$=8,
當(dāng)且僅當(dāng)x=2y=4,取得最小值8.
由x+2y≥a恒成立,可得a≤8,
則a的最大值為8.
故選:D.

點評 本題考查不等式恒成立問題的解法,注意運用轉(zhuǎn)化思想,考查基本不等式的運用:求最值,注意一正二定三等,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點.
(Ⅰ)求證:EF∥面ABC;
(Ⅱ)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點A(-2,-1),B(a,3)且|AB|=5,則a等于(  )
A.1B.-5C.1或-5D.其他值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四面體P-ABC中,PA⊥平面ABC,△ABC為正三角形,PA=2,AB=3,則該四面體外接球的表面積等于16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.分別過橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左右焦點F1,F(xiàn)2的動直線l1,l2交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4,且滿足k1+k2=k3+k4,已知當(dāng)l1與x軸重合時,|AB|=2$\sqrt{3}$,|CD|=$\frac{4\sqrt{3}}{3}$.
(1)求橢圓E的方程;
(2)設(shè)點E1,E2的坐標分別為(-1,0),(1,0),證明|PE1|+|PE2|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>0,那么3x+$\frac{4}{x}$的最小值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計算定積分$\int_1^a$(2x+$\frac{1}{x}$)dx=3+ln2,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求數(shù)列{(2n+1)an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x2+mx+1,若對于任意的x∈R都有f(x)≥0恒成立,則實數(shù)m的取值范圍是[-2,2].

查看答案和解析>>

同步練習(xí)冊答案