A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 由x+2y≥a恒成立,可得a不大于x+2y的最小值,運用乘1法和基本不等式,可得x+2y的最小值為8,進而得到a的最大值.
解答 解:x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,可得
x+2y=(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=4+$\frac{x}{y}$+$\frac{4y}{x}$≥4+2$\sqrt{\frac{x}{y}•\frac{4y}{x}}$=8,
當(dāng)且僅當(dāng)x=2y=4,取得最小值8.
由x+2y≥a恒成立,可得a≤8,
則a的最大值為8.
故選:D.
點評 本題考查不等式恒成立問題的解法,注意運用轉(zhuǎn)化思想,考查基本不等式的運用:求最值,注意一正二定三等,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com