4.平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,且|$\sqrt{2}$$\overrightarrow{AB}$+$\overrightarrow{BD}}$|=2,沿BD將四邊形折起成直二面角A-BD-C,則三棱錐A-BCD外接球的表面積為( 。
A.B.16πC.D.$\frac{π}{2}$

分析 由已知中$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,可得AB⊥BD,沿BD折起后,將四邊形折起成直二面角A一BD-C,可得平面ABD⊥平面BDC,可得三棱錐A-BCD的外接球的直徑為AC,進(jìn)而根據(jù)2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,求出三棱錐A-BCD的外接球的半徑,可得三棱錐A-BCD的外接球的表面積.

解答 解:∵平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,且|$\sqrt{2}$$\overrightarrow{AB}$+$\overrightarrow{BD}}$|=2,
∴平方得2|$\overrightarrow{AB}$|2+2$\sqrt{2}$$\overrightarrow{AB}$•$\overrightarrow{BD}}$+|$\overrightarrow{BD}$|2=4,
即2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,
∵$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵將四邊形折起成直二面角A一BD-C,
∴平面ABD⊥平面BDC
∴三棱錐A-BCD的外接球的直徑為AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2,
∵2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,
∴AC2=4
∴外接球的半徑為1,
故表面積是4π.
故選:A.

點評 本題考查的知識點是球內(nèi)接多面體,平面向量數(shù)量積的運(yùn)算,其中根據(jù)已知求出三棱錐A-BCD的外接球的半徑是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>0,那么3x+$\frac{4}{x}$的最小值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“直線ax+y+1=0與直線(a+2)x-3y-2=0垂直”是“a=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,已知前n項和Sn=3+2an,求數(shù)列的通項公式an等于-3×2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=x2+mx+1,若對于任意的x∈R都有f(x)≥0恒成立,則實數(shù)m的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=2x-$\frac{2}{x}$-2lnx,則曲線y=f(x)在點(1,f(1))處的切線方程為2x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知在△ABC中,A=60°,AC=6,BC=k,若△ABC有兩解,則k的取值范圍是(3$\sqrt{3}$,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線l:(a-2)x+(a+1)y+6=0,則直線l恒過定點(2,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為大力提倡“厲行節(jié)儉,反對浪費(fèi)”,某高中通過隨機(jī)詢問100名性別不同的學(xué)生是否做到“光盤”行動,得到如表所示聯(lián)表及附表:
做不到“光盤”行動做到“光盤”行動
4510
3015
P(K2≥k00.100.050.025
k02.7063.8415.024
經(jīng)計算:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$≈3.03,參考附表,得到的正確結(jié)論是( 。
A.有95%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別有關(guān)”
B.有95%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別無關(guān)”
C.有90%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別有關(guān)”
D.有90%的把握認(rèn)為“該學(xué)生能否做到光盤行到與性別無關(guān)”

查看答案和解析>>

同步練習(xí)冊答案