設(shè)函數(shù),其中向量,,x∈R,且y=f(x)的圖象經(jīng)過(guò)點(diǎn)
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合.
(Ⅲ)f(x)的圖象可由g(x)=1+sin2x如何變換得到?
【答案】分析:(Ⅰ)由f(x)==m(1+sin2x)+cos2x,,然后代入,可求m
(Ⅱ)由(Ⅰ)得,結(jié)合正弦函數(shù)的性質(zhì)可求
(Ⅲ)把g(x)的圖象向左平移,即可得f(x)的圖象.
解答:解:(Ⅰ)∵f(x)═=m(1+sin2x)+cos2x,
由已知,得m=1.…(2分)
(Ⅱ)由(Ⅰ)得,…(4分)
∴當(dāng)時(shí),f(x)的最小值為,…(6分)
,得x值的集合為…(8分)
(Ⅲ)∵f(x)=1=sin(2x+)=1+sin2(x+
把g(x)的圖象向左平移,即可得f(x)的圖象.…(10分)
注:若f(x)是用余弦表示,正確的同樣給分.
點(diǎn)評(píng):本題以向量的數(shù)量積的坐標(biāo)表示為載體,主要考查了三角輔助角公式的應(yīng)用,正弦函數(shù)最值的求解及取得最值條件的應(yīng)用、函數(shù)圖象平移法則的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年萊陽(yáng)一中期末)(12分)

  設(shè)函數(shù),其中向量。

  (1)求函數(shù)的最小正周期和在上的單調(diào)遞增區(qū)間;

  (2)當(dāng)時(shí),恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù),其中向量,

。

(1)求函數(shù)的最大值和最小正周期;

(2)將函數(shù)的圖像按向量平移,使平移后得到的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,求長(zhǎng)度最小的。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(22)(解析版) 題型:解答題

設(shè)函數(shù),其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的圖象經(jīng)過(guò)點(diǎn)
(1)求實(shí)數(shù)m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本題滿分12分)設(shè)函數(shù),其中向量=(2cosx,1),=(cosx,

sin2x),x∈R.

(1)若f(x)=1-且x∈[-,],求x;

(2)若函數(shù)y=2sin2x的圖象按向量=(m,n)(|m|<)平移后得到函數(shù)y=f(x)的圖象,求實(shí)數(shù)m、n的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東湛江市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

設(shè)函數(shù),其中向量,,,且的圖象經(jīng)過(guò)點(diǎn).(1)求實(shí)數(shù)的值;

(2)求函數(shù)的最小值及此時(shí)值的集合.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案