精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函數f(x)圖象關于原點中心對稱,其圖象在x=3處的切線方程為8x-y-18=0,
數學公式
(1)求函數f(x)的解析式;
(2)若數學公式在[0,2]上恒成立,求實數a的取值范圍;
(3)若數列{an}滿足an+1=g(an),a1=2,(n∈N*),
試證明:數學公式

解:(1)因為函數f(x)關于原點對稱,所以b=d=0,所以f(x)=ax3+cx,
又有f′(x)=3ax2+c,又函數f(x)在x=3處的切線方程為8x-y-18=0,
所以f′(3)=3a×9+c=8,f(3)=27a+3c=6,
所以

(2)在[0,2]上恒成立,即,
即證在[0,2]上恒成立,
,則h′(x)=x2-3x+2,令h′(x)=x2-3x+2=0,
則x1=1,x2=2
則有當x<1時,f′(x)>0,所以f(x)在(-∞,1)遞增;
當1<x<3時,f′(x)<0,所以f(x)在(1,3)遞減;
當x>3時,f′(x)>0,所以f(x)在(-∞,1)遞增;
所以,
所以函數h(x)在[0,2]的最小值為0,所以有0>a2+a,即-1<a<0

(3),由an+1=g(an),a1=2,
所以an+1=an2+1>an2>0,
所以lnan+1>2lnan>22lnan-1>>2n-1ln2,
所以,則有
所以(14分)
分析:(1)因為函數f(x)關于原點對稱,所以f(x)=ax3+cx,f′(x)=3ax2+c,函數f(x)在x=3處的切線方程為8x-y-18=0,所以f(3)=27a+3c=6,由此導出
(2)在[0,2]上恒成立,令,則h′(x)=x2-3x+2,令h′(x)=x2-3x+2=0,則x1=1,x2=2,再由函數的單調性導出函數h(x)在[0,2]的最小值為0,所以有0>a2+a,即-1<a<0.
(3),由an+1=g(an),a1=2,所以,則有,從而證明
點評:本題考查數列和不等式的綜合運用,解題時要認真審題,仔細解答,注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案