【題目】如果函數(shù)y=f(x)的定義域?yàn)镽,對于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f=f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”;
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,試寫出所有a的值;若不具有“P(a)性質(zhì)”,請說明理由;
(2)已知y=f(x)具有“P(0)性質(zhì)”,當(dāng)x≤0時(shí),f(x)=(x+t)2 , t∈R,求y=f(x)在[0,1]上的最大值;
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)﹣ ≤x≤ 時(shí),g(x)=|x|,求:當(dāng)x∈R時(shí),函數(shù)g(x)的解析式,若y=g(x)與y=mx(m∈R)交點(diǎn)個(gè)數(shù)為1001個(gè),求m的值.

【答案】
(1)解:由sin(x+a)=sin(﹣x)得sin(x+a)=﹣sinx,

根據(jù)誘導(dǎo)公式得a=2kπ+π(k∈Z).

∴y=sinx具有“P(a)性質(zhì)”,其中a=2kπ+π(k∈Z)


(2)解:∵y=f(x)具有“P(0)性質(zhì)”,

∴f(x)=f(﹣x).

設(shè)x≥0,則﹣x≤0,∴f(x)=f(﹣x)=(﹣x+t)2=(x﹣t)2

∴f(x)=

當(dāng)t≤0時(shí),∵y=f(x)在[0,1]遞增,

∴x=1時(shí)ymax=(1﹣t)2,

當(dāng)0<t< 時(shí),y=f(x)在[0,t]上遞減,在[t,1]上遞增,且f(0)=t2<f(1)=(1﹣t)2,

∴x=1時(shí)ymax=(1﹣t)2,

當(dāng)t≥ 時(shí),

∵y=f(x)在[0,m]上遞減,在[m,1]上遞增,且f(0)=m2≥f(1)=(1﹣m)2,

∴x=0時(shí),ymax=t2,

綜上所述:當(dāng)t< 時(shí),ymax=f(1)=(1﹣t)2,

當(dāng)t≥ ymax=f(0)=t2


(3)解:∵y=g(x)具有“P(±1)性質(zhì)”,

∴g(1+x)=g(﹣x),g(﹣1+x)=g(﹣x),

∴g(x+2)=g(1+1+x)=g(﹣1﹣x)=g(x),從而得到y(tǒng)=g(x)是以2為周期的函數(shù).

≤x≤ 設(shè),則﹣ ≤x﹣1≤ ,

g(x)=g(x﹣2)=g(﹣1+x﹣1)=g(﹣x+1)=|﹣x+1|=|x﹣1|=g(x﹣1).

再設(shè)n﹣ ≤x≤n+ (n∈z),

當(dāng)n=2k(k∈z),則2k﹣ ≤x≤2k+ ,則﹣ ≤x﹣2k≤ ,

g(x)=g(x﹣2k)=|x﹣2k|=|x﹣n|;

當(dāng)n=2k+1(k∈z),則2k+1﹣ ≤x≤2k+1+ ,則 ≤x﹣2k≤

g(x)=g(x﹣2k)=|x﹣2k﹣1|=|x﹣n|;

∴g(x)=

∴對于n﹣ ≤x≤n+ ,(n∈z),都有g(shù)(x)=|x﹣n|,而n+1﹣ <x+1<n+1+ ,

∴g(x+1)=|(x+1)﹣(n+1)|=|x﹣n|=g(x),

∴y=g(x)是周期為1的函數(shù).

①當(dāng)m>0時(shí),要使y=mx與y=g(x)有1001個(gè)交點(diǎn),只要y=mx與y=g(x)在[0,500)有1000個(gè)交點(diǎn),而在[500,501]有一個(gè)交點(diǎn).

∴y=mx過( , ),從而得m=

②當(dāng)m<0時(shí),同理可得m=﹣

③當(dāng)m=0時(shí),不合題意.

綜上所述m=±


【解析】(1)根據(jù)題意先檢驗(yàn)sin(x+a)=sin(﹣x)是否成立即可檢驗(yàn)y=sinx是否具有“P(a)性質(zhì)”(2)由y=f(x)具有“P(0)性質(zhì)可得f(x)=f(﹣x),結(jié)合x≤0時(shí)的函數(shù)解析式可求x≥0的函數(shù)解析式,結(jié)合t的范圍判斷函數(shù)y=f(x)在[0,1]上的單調(diào)性即可求解函數(shù)的最值(3)由題意可得g(1+x)=g(﹣x),g(﹣1+x)=g(﹣x),據(jù)此遞推關(guān)系可推斷函數(shù)y=g(x)的周期,根據(jù)交點(diǎn)周期性出現(xiàn)的規(guī)律即可求解滿足條件的m,以及g(x)的解析式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過點(diǎn)的圓的切線為.

(1)求直線的極坐標(biāo)方程;

(2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項(xiàng)公式;
(3)設(shè)有m項(xiàng)的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項(xiàng)?并求出這些項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導(dǎo)函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M(3,2)到拋物線C:y=ax2(a>0)準(zhǔn)線的距離為4,F(xiàn)為拋物線的焦點(diǎn),點(diǎn)N(l,l),當(dāng)點(diǎn)P在直線l:x﹣y=2上運(yùn)動(dòng)時(shí), 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案