若方程
1-x2
=x+m
無實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是
(-∞,-1)∪(
2
,+∞)
(-∞,-1)∪(
2
,+∞)
分析:由根據(jù)方程的根與對(duì)應(yīng)函數(shù)零點(diǎn)之間的關(guān)系,可將方程
1-x2
=x+m
無實(shí)數(shù)解問題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)無零點(diǎn)的問題,即函數(shù)y=
1-x2
與函數(shù)y=x+m的圖象無交點(diǎn),利用圖象法,我們易求出實(shí)數(shù)m的取值范圍.
解答:解:若方程
1-x2
=x+m
無實(shí)數(shù)解,
則函數(shù)y=
1-x2
與函數(shù)y=x+m的圖象無交點(diǎn),
在同一坐標(biāo)系中分別畫出函數(shù)y=
1-x2
與函數(shù)y=x+m的圖象,如圖所示:

∵函數(shù)y=
1-x2
的導(dǎo)函數(shù)y'=
-x
-x2+1
,
令y'=1,則x=-
2
2
,
此時(shí),m=
2
,
結(jié)合上圖,
得到滿足條件的實(shí)數(shù)m的取值范圍是(-∞,-1)∪(
2
,+∞).
故答案為:(-∞,-1)∪(
2
,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線和圓的方程的應(yīng)用,其中根據(jù)方程的根與對(duì)應(yīng)函數(shù)零點(diǎn)之間的關(guān)系,將問題轉(zhuǎn)化為函數(shù)的零點(diǎn)問題是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若方程
1-x2
=x+b
有兩個(gè)不同的實(shí)根,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
1-x2
=x+m
無實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-1)
B、[0,1)
C、(-∞,-1)∪(
2
,+∞)
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)若方程
1-
x
2
 
x+a
-1=0
僅有一解,則實(shí)數(shù)a的取值范圍上
{
2
}∪(-1,1]
{
2
}∪(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
1-x2
=x+m
有解,則實(shí)數(shù)m的取值范圍是
[-1,
2
]
[-1,
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案