某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.
(1)將一星期的商品銷售利潤(rùn)表示成的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?
(1);(2)當(dāng)即商品每件定價(jià)為9元時(shí),可使一個(gè)星期的商品銷售利潤(rùn)最大.
解析試題分析:(1)先寫出多賣的商品數(shù),則可計(jì)算出商品在一個(gè)星期的獲利數(shù),再依題意:“商品單價(jià)降低1元時(shí),一星期多賣出5件”求出比例系數(shù),即可得一個(gè)星期的商品銷售利潤(rùn)表示成的函數(shù);(2)根據(jù)(1)中得到的函數(shù),利用導(dǎo)數(shù)研究其極值,也就是求出函數(shù)的極大值,從而得出定價(jià)為多少元時(shí),能使一個(gè)星期的商品銷售利潤(rùn)最大.
試題解析:(1)依題意,設(shè),由已知有,從而
3分
7分
(2) 9分
由得,由得或
可知函數(shù)在上遞減,在遞增,在上遞減 11分
從而函數(shù)取得最大值的可能位置為或是
,
當(dāng)時(shí), 13分
答:商品每件定價(jià)為9元時(shí),可使一個(gè)星期的商品銷售利潤(rùn)最大 14分.
考點(diǎn):1.函數(shù)模型及其應(yīng)用;2.導(dǎo)數(shù)的實(shí)際應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)
的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
①求實(shí)數(shù)a,b的值;②求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求證:時(shí),恒成立;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個(gè)零點(diǎn),且1是其中一個(gè)零點(diǎn).
(1)求b的值 (2)求f(2)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=ln(x2+1),g(x)=x2-.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對(duì)[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個(gè)單位,同時(shí)將y=g(x)的圖像向上平移b(b>0)個(gè)單位,使它們恰有四個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=時(shí),證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(2)如果對(duì)于任意的s,t∈,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=-3有四個(gè)零點(diǎn),求b的取值范圍;
(3)若對(duì)于任意的x1,x2∈[-1,1]時(shí),都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013·重慶卷)設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com