已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當a=時,證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.

(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線yx2+1,求過點P(0,0)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)=,其中a為正實數(shù).
(1)當a=時,求f(x)的極值點.
(2)若f(x)為[,]上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2 (x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商品每件成本5元,售價14元,每星期賣出75件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低1元時,一星期多賣出5件.
(1)將一星期的商品銷售利潤表示成的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)若存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;
(2)若,求證:當時,恒成立;
(3)設,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處存在極值.
(1)求實數(shù)的值;
(2)函數(shù)的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數(shù)的取值范圍;
(3)當時,討論關于的方程的實根個數(shù).

查看答案和解析>>

同步練習冊答案