A. | 3019×22012 | B. | 3019×22013 | C. | 3018×22012 | D. | 無(wú)法確定 |
分析 由已知得a2=3a1+2=5,a1+a2+…+an+1=4an+2,a1+a2+…+an=4an-1+2,兩式相減得到{an-2an-1}是等比數(shù)列,公比q=2,從而得到{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,公差d=$\frac{3}{4}$,n≥2,由此求出an=(3n-1)•2n-2,從而能求出結(jié)果.
解答 解:∵在數(shù)列{an}中,a1=1,Sn+1=4an+2,
∴S2=4a1+2=a1+a2,∴a2=3a1+2=5,
a1+a2+…+an+1=4an+2,①
a1+a2+…+an=4an-1+2,②
①-②,得:an+1=4an-4an-1,
an+1-2an=2(an-2an-1),
∴{an-2an-1}是等比數(shù)列,公比q=2,
an-2an-1=2n-2•(a2-2a1)=3•2n-2,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{4}$,
∴{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,公差d=$\frac{3}{4}$,n≥2,
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{2}}{{2}^{2}}$=$\frac{3(n-2)}{4}$,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3n-1}{4}$,∴an=(3n-1)•2n-2,
∴a2013=(3×2013-1)•22011=3019×22012.
故選:A.
點(diǎn)評(píng) 本題考查數(shù)列的第2013項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意遞推公式和構(gòu)造法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 18 | C. | 21 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $ω=\frac{1}{2}$,φ=$\frac{π}{4}$ | B. | ω=2,φ=$\frac{π}{4}$ | C. | $ω=\frac{1}{2}$,φ=$\frac{π}{2}$ | D. | ω=2,φ=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com