【題目】某機構為了解某地區(qū)中學生在校月消費情況,隨機抽取了100名中學生進行調查.如圖是根據(jù)調查的結果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學生稱為“高消費群”.
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為“高消費群”與性別有關?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】按照某學者的理論,假設一個人生產某產品單件成本為a元,如果他賣出該產品的單價為m元,則他的滿意度為 ;如果他買進該產品的單價為n元,則他的滿意度為 .如果一個人對兩種交易(賣出或買進)的滿意度分別為h1和h2 , 則他對這兩種交易的綜合滿意度為 .現(xiàn)假設甲生產A、B兩種產品的單件成本分別為12元和5元,乙生產A、B兩種產品的單件成本分別為3元和20元,設產品A、B的單價分別為mAm元和mB元,甲買進A與賣出B的綜合滿意度為h甲 , 乙賣出A與買進B的綜合滿意度為h乙 .
(1)求h甲和h乙關于mA、mB的表達式;當mA= mB時,求證:h甲=h乙;
(2)設mA= mB , 當mA、mB分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=log2(2x+a)的定義域為(0,+∞).
(1)求a的值;
(2)若g(x)=log2(2x+1),且關于x的方程f(x)=m+g(x)在[1,2]上有解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=﹣x與直線y=k(x+1)(k≠0)相交于A、B兩點,O是坐標原點.
(1)當k= 時,求|AB|的長;
(2)求證無論k為何值都有OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線與的交點到軸的距離為,過點作軸的垂線, 為上異于點的一點,以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個交點為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 + + + = .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.
(1)求證:平面PBD⊥平面PAC;
(2)設AC與BD交于點O,M為OC中點,若二面角O﹣PM﹣D的正切值為2 ,求a:b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x+ 有如下性質:如果常數(shù)t>0,那么該函數(shù)在 上是減函數(shù),在 上是增函數(shù).
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質,求函數(shù)f(x)的單調區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=﹣x﹣2a,若對任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com