求函數(shù)f(x)=cos2x-sinx的值域.
考點(diǎn):三角函數(shù)的最值
專(zhuān)題:三角函數(shù)的求值
分析:由條件根據(jù)正弦函數(shù)的值域,二次函數(shù)的性質(zhì)求得f(x)的值域.
解答: 解:由于函數(shù)f(x)=cos2x-sinx=1-2sin2x-sinx=-2(sinx+
1
4
)
2
+
9
8
,sinx∈[-1,1],
故當(dāng)sinx=-
1
4
時(shí),函數(shù)取得最大值為
9
8
,當(dāng)sinx=1時(shí),函數(shù)取得最小值為-2×
25
16
+
9
8
=-2,
故函數(shù)y的值域?yàn)閇-2,
9
8
].
點(diǎn)評(píng):本題主要考查正弦函數(shù)的值域,二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足S5=3a5-2,a1,a2,a5依次成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
1
anan+1
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=-n2+13n-
133
4
.當(dāng)a1a2a3+a2a3a4+a3a4a5+…+anan+1an+2取得最大值時(shí),n的值為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列1,1+2,1+2+3,…的前n項(xiàng)的和為Sn,則Sn等于( 。
A、
n(n+1)(n+2)
6
B、
n(n+1)(n-2)
6
C、
n(n+1)(2n+1)
6
D、
n(n+1)(2n-1)
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=sin(2x-
π
4
)的最大值,最小值,振幅,頻率,相位,初相,周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,弦AD和CE相較于⊙O內(nèi)一點(diǎn)F,延長(zhǎng)EC與過(guò)點(diǎn)A的切線(xiàn)相交于點(diǎn)B,已知AB=BF=FD,BC=1,CE=8,求AB及AF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且b=2
2
,(3a-c)•cosB=b•cosC.
(1)求角cosB的大。
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
lnx
x+1
求導(dǎo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x+
1+x2
10,則
f′(0)
f(0)
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案