(本小題滿分14分)
已知橢圓C的左,右焦點坐標分別為,離心率是。橢圓C的左,右頂點分別記為A,B。點S是橢圓C上位于軸上方的動點,直線AS,BS與直線分別交于M,N兩點。
求橢圓C的方程;
求線段MN長度的最小值;
當線段MN的長度最小時,在橢圓C上的T滿足:T到直線AS的距離等于.
試確定點T的個數(shù)。
解(1)因為,且,所以
所以橢圓C的方程為 …………………………………………….3分
(2 ) 易知橢圓C的左,右頂點坐標為,直線AS的斜率顯然存在,且
故可設(shè)直線AS的方程為,從而
由得
設(shè),則,得
從而,即
又,故直線BS的方程為
由得,所以
故
又,所以
當且僅當時,即時等號成立
所以時,線段MN的長度取最小值 ………………………………..9分
(3)由(2)知,當線段MN的長度取最小值時,
此時AS的方程為,,
因為點T到直線AS的距離等于,
所以點T在平行于AS且與AS距離等于的直線上
設(shè),則由,解得
當時,由得
由于,故直線與橢圓C有兩個不同交點
②時,由得
由于,故直線與橢圓C沒有交點
綜上所求點T的個數(shù)是2. ……………………………………………..14分
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com