【題目】如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上.求:
(1) AD邊所在直線的方程;
(2) DC邊所在直線的方程.
【答案】(1);(2)
【解析】分析:(1)先由AD與AB垂直,求得AD的斜率,再由點(diǎn)斜式求得其直線方程;
(2)根據(jù)矩形特點(diǎn)可以設(shè)DC的直線方程為,然后由點(diǎn)到直線的距離得出,就可以求出m的值,即可求出結(jié)果.
詳解:(1)由題意:ABCD為矩形,則AB⊥AD,
又AB邊所在的直線方程為:x-3y-6=0,
所以AD所在直線的斜率kAD=-3,
而點(diǎn)T(-1,1)在直線AD上.
所以AD邊所在直線的方程為:3x+y+2=0.
(2)方法一:由ABCD為矩形可得,AB∥DC,
所以設(shè)直線CD的方程為x-3y+m=0.
由矩形性質(zhì)可知點(diǎn)M到AB、CD的距離相等
所以=,解得m=2或m=-6(舍).
所以DC邊所在的直線方程為x-3y+2=0.
方法二:方程x-3y-6=0與方程3x+y+2=0聯(lián)立得A(0,-2),關(guān)于M的對(duì)稱點(diǎn)C(4,2)
因AB∥DC,所以DC邊所在的直線方程為x-3y+2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下結(jié)論:
①命題“若,則”的逆否命題“若,則”;
②“”是“”的充分條件;
③命題“若,則方程有實(shí)根”的逆命題為真命題;
④命題“若,則且”的否命題是真命題.
其中錯(cuò)誤的是__________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶為“組”,否則為“組”,調(diào)查結(jié)果如下:
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“組”用戶與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營養(yǎng)面膜1份,求所抽取5人中“組”和“組”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中在“組”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.
參考公式: ,其中.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代勞動(dòng)人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗(yàn),總結(jié)出了一套有關(guān)體積、容積計(jì)算的方法,這些方法以實(shí)際問題的形式被收入我國古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)·商功》:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”下圖解釋了這段話中由一個(gè)長方體,得到“塹堵”、“陽馬”、“鱉臑”的過程.已知塹堵的內(nèi)切球(與各面均相切)直徑為1,則鱉臑的體積最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.
①求實(shí)數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花卉經(jīng)銷商銷售某種鮮花,售價(jià)為每支5元,成本為每支2元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.當(dāng)天未售出的當(dāng)垃圾處理.根據(jù)以往的銷售情況,按 進(jìn)行分組,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計(jì)算該種鮮花日需求量的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表;
(2)該經(jīng)銷商某天購進(jìn)了400支這種鮮花,假設(shè)當(dāng)天的需求量為x枝,,利潤為y元,求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計(jì)利潤不小于800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對(duì)應(yīng)的人數(shù)表:
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表
(2)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】個(gè)人在某個(gè)節(jié)日期間互通電話問候,已知其中每個(gè)人至多打通了三個(gè)朋友家的電話,任何兩個(gè)人之間至多進(jìn)行一次通話,且任何三個(gè)人中至少有兩人,其中一個(gè)人打通了另一個(gè)人家里的電話,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com