【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】B
【解析】令, ,∴在上恒成立,設(shè),則,再令,則,∴在上恒成立,∴在上為增函數(shù),
∴∴在上恒成立,∴在上減函數(shù),∴,實數(shù)的取值范圍為,故選B.
【方法點晴】本題主要考查“分離參數(shù)”在解題中的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及利用單調(diào)性求參數(shù)的范圍,屬于中檔題. 利用單調(diào)性求參數(shù)的范圍的常見方法:① 視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的; ② 利用導(dǎo)數(shù)轉(zhuǎn)化為不等式或恒成立問題求參數(shù)范圍,本題是利用方法 ② 求解的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù) 和樣本方差s2(同一組中數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 .
(i)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù),利用(i)的結(jié)果,求EX.
附: ≈12.2.
若Z~N(μ,σ2)則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過市場調(diào)查,某種商品在銷售中有如下關(guān)系:第x(1≤x≤30,x∈N+)天的銷售價格(單位:元/件)為f(x)=第x天的銷售量(單位:件)為g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200元(銷售收入=銷售價格×銷售量).
(1)求a的值,并求第15天該商品的銷售收入;
(2)求在這30天中,該商品日銷售收入y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 和所在平面互相垂直,且, 分別為AC、DC、AD的中點
(1)求證: 平面BCG;
(2)求三棱錐D-BCG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E: ﹣ =1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點,動直線l分別交直線l1 , l2于A,B兩點(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一中最強大腦社對高中學(xué)生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù)
參考公式:,.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ,預(yù)測記憶力為的同學(xué)的判斷力.
(2)若記憶力增加個單位,預(yù)測判斷力增加多少個單位?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中x的值;
(2)如果上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,若該學(xué)校有600名新生,請估計新生中有多少名學(xué)生可以申請住宿;
(3)由頻率分布直方圖估計該校新生上學(xué)所需時間的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com