9.已知線段PQ兩端點(diǎn)的坐標(biāo)分別為(-1,1),(2,2),若直線l:x+my+m=0與線段PQ有交點(diǎn),則m的范圍是(  )
A.$(-∞,-\frac{2}{3}]∪[\frac{1}{2},+∞)$B.$[-\frac{2}{3},\frac{1}{2}]$C.$(-∞,-\frac{3}{2}]∪[2,+∞)$D.$[-\frac{3}{2},2]$

分析 (方法一)利用直線l過(guò)定點(diǎn),結(jié)合圖象,看斜率與已知直線斜率間的關(guān)系,列出不等式解出m的范圍.
(方法二)由題意知,P,Q兩點(diǎn)在直線的兩側(cè)或其中一點(diǎn)在直線l上,故有(-1+m+m)•(2+2m+m)≤0

解答 解:(方法一)直線l:x+my+m=0恒過(guò)A(0,-1)點(diǎn),
kAP=$\frac{-1-1}{0+1}$=-2,kAQ=$\frac{-1-2}{0-2}$=$\frac{3}{2}$,
則-$\frac{1}{m}$≥$\frac{3}{2}$或-$\frac{1}{m}$≤-2,∴-$\frac{2}{3}$≤m≤$\frac{1}{2}$且m≠0,
又∵m=0時(shí)直線l:x+my+m=0與線段PQ有交點(diǎn),
∴所求m的范圍是-$\frac{2}{3}$≤m≤$\frac{1}{2}$;
(方法二)∵P,Q兩點(diǎn)在直線的兩側(cè)或其中一點(diǎn)在直線l上,
∴(-1+m+m)•(2+2m+m)≤0解得:-$\frac{2}{3}$≤m≤$\frac{1}{2}$,
∴所求m的范圍是-$\frac{2}{3}$≤m≤$\frac{1}{2}$;
故選:B.

點(diǎn)評(píng) 本題考查2條直線的交點(diǎn)問(wèn)題,借助圖形,增強(qiáng)了直觀性,容易找到簡(jiǎn)單正確的解題方法,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x與y之間的一組數(shù)據(jù)如表所示,當(dāng)m變化時(shí),y與x的回歸直線方程$\hat y=bx+a$必過(guò)定點(diǎn)$({\frac{3}{2},4})$.
x0123
y135-m7+m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)$f(x)={x^{-\frac{1}{2}}}-{x^{\frac{2}{3}}}(x>0)$,則滿足f(x)<0的x的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.2015年8月12日天津發(fā)生;分卮蟊ㄊ鹿剩斐芍卮笕藛T和經(jīng)濟(jì)損失.某港口組織消防人員對(duì)該港口的公司的集裝箱進(jìn)行安全抽檢,已知消防安全等級(jí)共分為四個(gè)等級(jí)(一級(jí)為優(yōu),二級(jí)為良,三級(jí)為中等,四級(jí)為差),該港口消防安全等級(jí)的統(tǒng)計(jì)結(jié)果如下表所示:
等 級(jí)一級(jí)二級(jí)三級(jí)四級(jí)
頻 率0.302mm0.10
現(xiàn)從該港口隨機(jī)抽取了n家公司,其中消防安全等級(jí)為三級(jí)的恰有20家.
(1)求m,n的值;
(2)按消防安全等級(jí)利用分層抽樣的方法從這n家公司中抽取10家,除去消防安全等級(jí)為一級(jí)和四級(jí)的公司后,再?gòu)氖S喙局腥我獬槿?家,求抽取的這2家公司的消防安全等級(jí)都是二級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知二次函數(shù)f(x)=x2-16x+q
(1)若當(dāng)x∈[-1,1]時(shí),方程f(x)=-3有解,求實(shí)數(shù)q的取值范圍;
(2)問(wèn):是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為-54?若存在,求出q的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,在平面直角坐標(biāo)系中,直線AB交x、y軸于點(diǎn)A(10$\sqrt{3}$,0),B(0,-30),一圓心位于(0,3),半徑為3的動(dòng)圓沿x軸向右滾動(dòng),動(dòng)圓每6秒滾動(dòng)一圈,則動(dòng)圓與直線AB第一次相切時(shí)所用的時(shí)間為$\frac{9\sqrt{3}}{π}$ 秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=loga(x-m)的圖象過(guò)點(diǎn)(4,0)和(7,1),則f(x)在定義域上是( 。
A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)g(x)=x(x2-1),則g(x)在區(qū)間[0,1]上的最小值為( 。
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知cosx-sinx=$\frac{3\sqrt{2}}{5}$,則$\frac{cos2x}{sin(x+\frac{π}{4})}$=$\frac{6}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案