18.若f(x)=3sin(2ωx+$\frac{π}{6}$)-1在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,則正實數(shù)ω的取值范圍(0,$\frac{1}{2}$].

分析 求出f(x)的增區(qū)間D,令[-$\frac{π}{6}$,$\frac{π}{3}$]⊆D,解出ω.

解答 解:令-$\frac{π}{2}$+2kπ≤2ωx+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{3ω}$+$\frac{kπ}{ω}$≤x≤$\frac{π}{6ω}$+$\frac{kπ}{ω}$,
∵f(x)的單調(diào)遞增區(qū)間為[-$\frac{π}{3ω}$+$\frac{kπ}{ω}$,$\frac{π}{6ω}$+$\frac{kπ}{ω}$],
∵f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增,
∴$\left\{\begin{array}{l}{-\frac{π}{3ω}≤-\frac{π}{6}}\\{\frac{π}{3}≤\frac{π}{6ω}}\end{array}\right.$,解得ω≤$\frac{1}{2}$.
∴又ω>0,∴0<ω$≤\frac{1}{2}$.
故答案為(0,$\frac{1}{2}$].

點評 本題考查了正弦函數(shù)的圖象與性質(zhì),正弦函數(shù)的單調(diào)性,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A(1,2),B(5,4),C(x,3),D(-3,y),且$\overrightarrow{AB}$=$\overrightarrow{CD}$,則x,y的值分別為( 。
A.-7,-5B.7,-5C.-7,5D.7,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=2sin(3x-$\frac{π}{2}$)
(1)判斷f(x)奇偶性.
(2)求出f(x)的最小正周期.
(3)求出f(0)+f($\frac{π}{6}$)+f($\frac{π}{3}$)+f($\frac{π}{2}$)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,矩形ABCD的周長為8,設(shè)AB=x(1≤x≤3),線段MN的兩端點在矩形的邊上滑動,且MN=1,當N沿A→D→C→B→A在矩形的邊上滑動一周時,線段MN的中點P所形成的軌跡為G,記G圍成的區(qū)域的面積為y,則函數(shù)y=f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=sin(x+$\frac{π}{4}$)x∈(0,π)的單調(diào)增區(qū)間為(0,$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.袋中有2個紅色的變形金剛,2個白色的變形金剛,2個黑色的變形金剛,從里面任意取2個變形金剛,不是基本事件的為(  )
A.{恰好2個紅色的變形金剛}B.{恰好2個黑色的變形金剛}
C.{恰好2個白色的變形金剛}D.{至少1個紅色的變形金剛}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)復(fù)數(shù)z1=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,z2=3+4i,則$\frac{{|z}_{1}^{2016}|}{|\overline{{z}_{2}}|}$=( 。
A.$\frac{2}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.非零向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=30°,且對?λ>0,且|$\overrightarrow{a}$-λ$\overrightarrow$|≥|$\overrightarrow{a}$-$\overrightarrow$|恒成立,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.4B.2$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:$\frac{1}{x-1}$<1,q:x2+(a-1)x-a>0,若p是q的充分不必要條件,則實數(shù)a的取值范圍是( 。
A.(-2,-1]B.[-2,-1]C.[-3,-1]D.[-2,+∞)

查看答案和解析>>

同步練習冊答案