2.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的焦距為8,則m的值為(  )
A.3或$\sqrt{41}$B.3C.$\sqrt{41}$D.±3或$±\sqrt{41}$

分析 分類當(dāng)當(dāng)m<5時(shí),焦點(diǎn)在x軸上,焦距2c=8,則c=4,m2=a2-c2=9,則m=3,當(dāng)m>5時(shí),焦點(diǎn)在y軸上,c=4,m2=a2+c2=41,則m=$\sqrt{41}$,即可求得,m的值.

解答 解:由當(dāng)m<5時(shí),焦點(diǎn)在x軸上,焦距2c=8,則c=4,
由m2=a2-c2=9,則m=3,
當(dāng)m>5時(shí),焦點(diǎn)在y軸上,由焦距2c=8,則c=4,
由m2=a2+c2=41,則m=$\sqrt{41}$,
故m的值為3或$\sqrt{41}$,
故選A.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線a,b和平面α,則下列命題正確的是(  )
A.若a∥b,b∥α,則a∥αB.a⊥b,b⊥α,則a∥αC.若a∥b,b⊥α,則a⊥αD.若a⊥b,b∥α,則a⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=3sin(3x+$\frac{π}{4}$)的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)α,β是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.
(2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,m?α,那么m∥β.
其中正確命題的個(gè)數(shù)( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,E,F(xiàn)分別是AC,PB的中點(diǎn),PA=AB=2.
(Ⅰ)求證EF∥平面PCD;
(Ⅱ)求直線EF與平面PAB所成的角;
(Ⅲ)求四棱錐P-ABCD的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積是6$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線l1:(a+2)x+3y=5與直線l2:(a-1)x+2y=6平行,則a等于( 。
A.-1B.7C.$\frac{7}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a∈R,p:關(guān)于x的方程x2-2x+a=0有兩個(gè)不等實(shí)根;q:方程$\frac{{x}^{2}}{a-3}+\frac{{y}^{2}}{a+1}=1$表示雙曲線.若p∨q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,5,6},則A∩(∁UB)=( 。
A.{1,2}B.{1,2,7}C.{1,2,4}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案