設(shè)橢圓C:的兩個焦點為F1、F2,點B1為其短軸的一個端點,滿足,。
(1)求橢圓C的方程;
(2)過點M 做兩條互相垂直的直線l1、l2設(shè)l1與橢圓交于點A、B,l2與橢圓交于點C、D,求的最小值。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓具有性質(zhì):若是橢圓:且為常數(shù)上關(guān)于原點對稱的兩點,點是橢圓上的任意一點,若直線和的斜率都存在,并分別記為,,那么與之積是與點位置無關(guān)的定值.
試對雙曲線且為常數(shù)寫出類似的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)) 是上的動點,點滿足,點的軌跡為曲線.
(1)求的方程;
(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
過點的直線交直線于,過點的直線交軸于點,,.
(1)求動點的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點、,已知點的坐標為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標準方程;
(2)設(shè)不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數(shù)列,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)、分別為橢圓的左、右兩個焦點.
(Ⅰ) 若橢圓C上的點到、兩點的距離之和等于4, 寫出橢圓C的方程和離心率.;
(Ⅱ) 若M、N是橢圓C上關(guān)于原點對稱的兩點,點P是橢圓上除M、N外的任意一點, 當直線PM、PN的斜率都存在, 并記為、時, 求證: ·為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系O中,直線與拋物線=2相交于A、B兩點。
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com