【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域?yàn)镽;命題q:不等式 <1+ax對(duì)一切正實(shí)數(shù)均成立.如果命題p或q為真命題,命題p且q為假命題,求實(shí)數(shù)a的取值范圍.
【答案】解:當(dāng)命題p為真命題
即f(x)=lg(ax2﹣x+ a)的定義域?yàn)镽,
即ax2﹣x+ a>0對(duì)任意實(shí)數(shù)x均成立,
∴
解得a>2,
當(dāng)命題q為真命題
即 ﹣1<ax對(duì)一切正實(shí)數(shù)均成立
即a> = = 對(duì)一切正實(shí)數(shù)x均成立,
∵x>0,
∴ >1,
∴ +1>2,
∴ <1,
∴命題q為真命題時(shí)a≥1.
∵命題p或q為真命題,命題p且q為假命題,
∴p與q有且只有一個(gè)是真命題.
當(dāng)p真q假時(shí),a不存在;
當(dāng)p假q真時(shí),a∈[1,2].
綜上知a∈[1,2].
【解析】分別求出命題P,Q為真命題時(shí)的等價(jià)條件,利用命題P或Q為真命題,P且Q為假命題,求a的范圍即可.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識(shí)點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1 , M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN⊥平面A1BC;
(2)求直線BC1和平面A1BC所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校擬在廣場上建造一個(gè)矩形花園,如圖所示,中間是完全相同的兩個(gè)橢圓型花壇,每個(gè)橢圓型花壇的面積均為216π平方米,兩個(gè)橢圓花壇的距離是1.5米.整個(gè)矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)
(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當(dāng)橢圓形花壇的長軸長為多少米時(shí),所建矩形花園占地最少?并求出最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)的頻率分布直方圖如圖所示.求眾數(shù)、中位數(shù)、平均數(shù)( )
A.63、64、66
B.65、65、67
C.65、64、66
D.64、65、64
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)閇a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐S﹣ABCD中,O為頂點(diǎn)在底面內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC的夾角是( )
A.30°
B.45°
C.60°
D.75°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com