分析 確定圓心與半徑,求出圓心(2,-3)到直線(xiàn)x-2y-3=0的距離,利用勾股定理,即可求出|PQ|.
解答 解:圓x2+y2-4x+6y+7=0,可化為(x-2)2+(y+3)2=6,
圓心(2,-3)到直線(xiàn)x-2y-3=0的距離為$\frac{|2+6-3|}{\sqrt{5}}$=$\sqrt{5}$,
∴|PQ|=2$\sqrt{6-5}$=2,
故答案為2.
點(diǎn)評(píng) 本題考查直線(xiàn)與圓相交的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若2x+1≥3,則x≥1 | B. | 若2x+1<3,則x<1 | C. | 若x≥1,則2x+1≥3 | D. | 若x<1,則2x+1≥3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$-1 | B. | $\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ |
ωx+φ | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ |
y | -1 | 1 | 3 | 1 | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\frac{1}{2}}]$ | B. | (0,3] | C. | $[{\frac{1}{2},3}]$ | D. | [3,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com