【題目】教材上一例問題如下:
一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表,試建立y與x之間的回歸方程.
溫度 x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
產(chǎn)卵數(shù)y/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
某同學(xué)利用圖形計(jì)算器研究它時,先作出散點(diǎn)圖(如圖所示),發(fā)現(xiàn)兩個變量不呈線性相關(guān)關(guān)系. 根據(jù)已有的函數(shù)知識,發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型曲線的附近(和是待定的參數(shù)),于是進(jìn)行了如下的計(jì)算:
根據(jù)以上計(jì)算結(jié)果,可以得到紅鈴蟲的產(chǎn)卵數(shù)y對溫度x的回歸方程為__________.(精確到0.0001) (提示:利用代換可轉(zhuǎn)化為線性關(guān)系)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A.6
B.8
C.12
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名大學(xué)生參加學(xué)校組織的“國學(xué)達(dá)人”挑戰(zhàn)賽, 每人均有兩輪答題機(jī)會,當(dāng)且僅當(dāng)?shù)谝惠啿贿^關(guān)時進(jìn)行第二輪答題.根據(jù)平時經(jīng)驗(yàn),甲、乙、丙三名大學(xué)生每輪過關(guān)的概率分別為,且三名大學(xué)生每輪過關(guān)與否互不影響.
(1)求甲、乙、丙三名大學(xué)生都不過關(guān)的概率;
(2)記為甲、乙、丙三名大學(xué)生中過關(guān)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取名進(jìn)行調(diào)查,將受訪用戶按年齡分成組: , ,…, ,并整理得到如下頻率分布直方圖:
(Ⅰ)求的值;
(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取一人,估計(jì)其年齡低于歲的概率;
(Ⅲ)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人研究中學(xué)生的性別與成績、視力、智商、閱讀量這4個變量的關(guān)系,隨機(jī)抽查了52名中學(xué)生,得到統(tǒng)計(jì)數(shù)據(jù)如表1至表4,則與性別有關(guān)聯(lián)的可能性最大的變量是( )
表1
成績 | 不及格 | 及格 | 總計(jì) |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
總計(jì) | 16 | 36 | 52 |
表2
視力 | 好 | 差 | 總計(jì) |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
總計(jì) | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 總計(jì) |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
總計(jì) | 16 | 36 | 52 |
表4
閱讀量 | 豐富 | 不豐富 | 總計(jì) |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
總計(jì) | 16 | 36 | 52 |
A.成績
B.視力
C.智商
D.閱讀量
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(1)求證:AB⊥PD;
(2)若∠BPC=90°,PB= ,PC=2,問AB為何值時,四棱錐P﹣ABCD的體積最大?并求此時平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f0(x)= (x>0),設(shè)fn(x)為fn﹣1(x)的導(dǎo)數(shù),n∈N* .
(1)求2f1( )+ f2( )的值;
(2)證明:對任意n∈N* , 等式|nfn﹣1( )+ fn( )|= 都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某實(shí)驗(yàn)室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關(guān)系:
f(t)=10﹣ ,t∈[0,24)
(1)求實(shí)驗(yàn)室這一天的最大溫差;
(2)若要求實(shí)驗(yàn)室溫度不高于11℃,則在哪段時間實(shí)驗(yàn)室需要降溫?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com