(12分)已知拋物線
, 過點
引一弦,使它恰在點
被平分,求這條弦所在的直線
的方程.
試題分析:設
交拋物線于
兩點,
由
兩式相減得:得
, …6分
又
是
的中點,∴
,
∴直線l的斜率
=3,∴直線
的方程為
. …12分
點評:“點差法”是解決圓錐曲線中與弦的中點有關的問題的比較好用的一種方法,其中蘊含了“設而不求”的思想方法.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)雙曲線的離心率等于
,且與橢圓
有公共焦點,
①求此雙曲線的方程.
②若拋物線的焦點到準線的距離等于橢圓的焦距,求該拋物線方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如果雙曲線
上一點
到它的右焦點距離為
,那么
到它右準線距離為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)在平面直角坐標系中,已知點
,過點
作拋物線
的切線,其切點分別為
(其中
)。
⑴ 求
的值;
⑵ 若以點
為圓心的圓與直線
相切,求圓的面積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左焦點為
,
是兩個頂點,如果
到直線
的距離等于
,則橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線C:
,
為拋物線上一點,
為
關于
軸對稱的點,
為坐標原點.(1)若
,求
點的坐標;
(2)若過滿足(1)中的點
作直線
交拋物線
于
兩點, 且斜率分別為
,且
,求證:直線
過定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
上的動點到焦點距離的最小值為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點, 且滿足
(
為坐標原點),當
時,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
點
是曲線
上的一個動點,曲線
在點
處的切線與
軸、
軸分別交于
兩點,點
是坐標原點. 給出三個命題:①
;②
的周長有最小值
;③曲線
上存在兩點
,使得
為等腰直角三角形.其中真命題的個數(shù)是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
>b>
的離心率為
且橢圓的一個焦點與拋物線
的焦點重合,斜率為
的直線
過橢圓的上焦點且與橢圓相交于P,Q兩點,線段PQ的垂直平分線與y軸相交于點M(0,m).
(1)求橢圓的標準方程;
(2)求m的取值范圍;
(3)試用m表示△MPQ的面積S,并求面積S的最大值.
查看答案和解析>>