分析 設(shè)z2=a+bi,a、b∈R,則z1=a-(b+2)i,由條件利用兩個復(fù)數(shù)代數(shù)形式的乘法法則,兩個復(fù)數(shù)相等的充要條件求得a、b的值,可得結(jié)論.
解答 解:設(shè)z2=a+bi,a、b∈R,則由$\overline{{z}_{2}}$-z1=2i,可得z1=a-bi-2i=a-(b+2)i,
再根據(jù)z1z2+2iz1-2iz2+1=0,可得[a-(b+2)i]•(a+bi )+2i[a-(b+2)i]-2i(a+bi)+1=0,
即 a2+b2+6b+5-2ai=0,故有a=0,且b=-1或 b=-5,
故 z1=-i,a2=-i,或 z1=3i,a2=-5i.
點(diǎn)評 本題主要考查兩個復(fù)數(shù)代數(shù)形式的乘法法則的應(yīng)用,兩個復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com