已知F1,F(xiàn)2是雙曲線(a>0,b>0)的左右兩個(gè)焦點(diǎn),過(guò)點(diǎn)F1作垂直于x軸的直線與雙曲線的兩條漸近線分別交于A,B兩點(diǎn),△ABF2是銳角三角形,則該雙曲線的離心率e的取值范圍是( )

(A)(1,2) (B)(1,) (C)(1,5) (D)(,+)

 

B

【解析】

試題分析:【解析】
雙曲線的漸近線方程為,當(dāng)時(shí),

所以,,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2014111718595176315954/SYS201411171859544194990044_DA/SYS201411171859544194990044_DA.006.png">是以為頂點(diǎn)的等腰三解形,是銳角三角形,所以

,故選B.

考點(diǎn):雙曲線的簡(jiǎn)單幾何性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省淄博市高三復(fù)習(xí)階段性診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

中,角A,B,C的對(duì)邊分別為a,b,c,若.

(1)求B;

(2)設(shè)函數(shù),求函數(shù)上的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市高三3月考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M為棱PB的中點(diǎn).

(1)證明:DM平面PBC;

(2)求二面角A—DM—C的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市高三3月考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長(zhǎng)為2+2.

(1)求橢圓C的方程;

(2)過(guò)右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè),若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市高三3月考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是線段BC上一動(dòng)點(diǎn),Q是線段DC上一動(dòng)點(diǎn),,則的取值范圍是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市高三3月考模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

將函數(shù)的圖象向右平移個(gè)單位,再向下平移1個(gè)單位后得到的函數(shù)圖象對(duì)應(yīng)的表達(dá)式為( )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省日照市高三5月統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.

(1)求證:平面ACFE;

(2)求二面角B—EF—D的平面角的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省日照市高三5月統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)全集等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省日照市高三3月第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

復(fù)數(shù)( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案