12.已知數(shù)列{an}中a1=1,Sn=4an-1+2,
(1)求a2,a3;
(2)設(shè)bn=an+1-2an,求數(shù)列{bn}的通項(xiàng)公式bn

分析 (1)由a1=1,Sn=4an-1+2代入可得a2=5,a3=16;
(2)當(dāng)n≥2時(shí),Sn+1=4an+2,Sn=4an-1+2,從而可得an+1-2an=2(an-2an-1),從而求通項(xiàng)公式.

解答 解:(1)∵a1=1,Sn=4an-1+2,
∴a2+1=4×1+2,
∴a2=5,
∴a3+6=4×5+2,
∴a3=16;
(2)當(dāng)n≥2時(shí),Sn+1=4an+2,Sn=4an-1+2,
兩式作差可得,
an+1=4an-4an-1,
故an+1-2an=2(an-2an-1),
又∵bn=an+1-2an,
∴bn=2bn-1,
又∵b1=a2-2a1=3,b2=a3-2a2=6,
∴數(shù)列{bn}是以3為首項(xiàng),2為公比的等比數(shù)列;
∴bn=3•2n-1

點(diǎn)評(píng) 本題考查了遞推法的應(yīng)用及構(gòu)造法的應(yīng)用,同時(shí)考查了等比數(shù)列的判斷與性質(zhì)應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)的n階導(dǎo)數(shù).
(1)y=xn;           
(2)y=eax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(1,1),2$\overrightarrow{a}$+$\overrightarrow$=(4,2),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.三角形ABC中角A、B、C對(duì)邊分別為a、b、c,且a=2,b=3,c=4.若長度為4的動(dòng)線段PQ的中點(diǎn)恰為A點(diǎn),則$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值是( 。
A.-$\frac{3}{2}$B.$\frac{11}{2}$C.$\frac{21}{2}$D.$\frac{29}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知p:|x-a|≤4,q:$\frac{1}{5x-{x}^{2}-6}$≥0,q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若x在第三象限,化簡$\sqrt{{(1+tanx)}^{2}{+(1-tanx)}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C丄側(cè)面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°,AB⊥AA1,H為棱CC1的中點(diǎn),D在棱BB1上,且A1D丄平面AB1H.
(Ⅰ)求證:D為BB1的中點(diǎn);
(Ⅱ)求二面角C1-A1D-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)z=i(-1+3i)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在公差不為零的等差數(shù)列{an}中,其前n項(xiàng)和為Sn,已知a3=5,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求an和Sn;
(Ⅱ)記${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+…\frac{1}{{{a_n}{a_{n+1}}}}$,若${T_n}≥\frac{9}{{{S_{n+k}}}}$對(duì)任意正整數(shù)n恒成立,求正整數(shù)k的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案