【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1是菱形,且CACB1

1)證明:面CBA1⊥面CB1A;

2)若∠BAA160°,A1CBCBA1,求二面角CA1B1C1的余弦值.

【答案】1)證明見解析;(2

【解析】

1)設AB1A1B交于O,連接OC,先證明AB1⊥平面CA1B,再根據(jù)面面垂直的判定定理即可得證;

2)由A1CBC,故COA1B,又(1)知OCAB1,AB1A1BO,故OC⊥平面ABB1A1,以O為原點,分別以OA,OBOCx,y,z軸建立空間直角坐標系,求出平面CA1B1和平面C1A1B1的法向量,利用夾角公式求出即可.

1)證明:設AB1A1B交于O,連接OC,如圖,

因為側(cè)面ABB1A1是菱形,所以AB1A1B,

CACB1,所以OCAB1,又A1BCOO

AB1⊥平面CA1B,又AB1平面CAB1,

故平面CBA1⊥平面CB1A

2)由A1CBC,故COA1B,又(1)知OCAB1,AB1A1BO

OC⊥平面ABB1A1,以O為原點,分別以OAOBOCx,y,z軸建立空間直角坐標系,如圖,

A1CBCBA12,則OC,

,,A1(0,1,0),B(0,1,0),

,得,

所以,

設平面CA1B1的一個法向量為,

,得,

設平面C1A1B1的一個法向量為

,得 ,

cos

又二面角CA1B1C1為銳角,

故二面角CA1B1C1的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,是橢圓的左右兩個焦點,過的直線與交于,兩點(在第一象限),的周長為8的離心率為.

1)求的方程;

2)設,的左右頂點,直線的斜率為,的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,已知橢圓C的離心率為,且點在橢圓C.橢圓C的左頂點為A.

1)求橢圓C的方程

2)橢圓的右焦點且斜率為的直線與橢圓交于PQ兩點,求三角形APQ的面積;

3)過點A作直線與橢圓C交于另一點B.若直線軸于點C,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著2022年北京冬奧會的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖.則下面結(jié)論中正確的是( )

2012-2018年,中國雪場滑雪人數(shù)逐年增加;②2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;③中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;④2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

A.①②③B.②③④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市在創(chuàng)建全國文明衛(wèi)生城市的過程中,為了調(diào)查市民對創(chuàng)建全國文明衛(wèi)生城市工作的了解情況,進行了一次知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計結(jié)果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

1)該市把得分不低于80分的市民稱為熱心市民,若以頻率估計概率,以樣本估計總體,求從該市的市民中任意抽取一位,抽到熱心市民的概率;

2)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示),請用正態(tài)分布的知識求

3)在(2)的條件下,該市為此次參加問卷調(diào)查的市民制定如下獎勵方案:

)得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

)每次獲贈送的隨機話費和對應的概率為:

贈送的隨機話費(單元:元)

30

60

概率

0.75

0.25

現(xiàn)有市民甲要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學期望.

附:參考數(shù)據(jù)與公式

,若,則①;

;③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=|xa|+|x+b|ab0.

1)當a1,b1時,求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年,全國各地區(qū)堅持穩(wěn)中求進工作總基調(diào),經(jīng)濟運行總體平穩(wěn),發(fā)展水平邁上新臺階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進,全年最終消費支出對國內(nèi)生產(chǎn)總值增長的貢獻率為57.8%.下圖為2019年居民消費價格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)

下列結(jié)論中不正確的是(

A.2019年第三季度的居民消費價格一直都在增長

B.20187月份的居民消費價格比同年8月份要低一些

C.2019年全年居民消費價格比2018年漲了2.5%以上

D.20193月份的居民消費價格全年最低

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學長期堅持貫徹以人為本,因材施教的教育理念,每年都會在校文化節(jié)期間舉行“數(shù)學素養(yǎng)能力測試”和“語文素養(yǎng)能力測試”兩項測試,以給學生課外興趣學習及輔導提供參考依據(jù).成績分為,,五個等級(等級,,分別對應5分,4分,3分,2分,1分).某班學生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“語文素養(yǎng)能力測試”科目的成績?yōu)?/span>的考生有3人.

1)求該班“數(shù)學素養(yǎng)能力測試”的科目平均分以及“數(shù)學素養(yǎng)能力測試”科目成績?yōu)?/span>的人數(shù);

2)若該班共有9人得分大于7分,其中有210分,39分,48分.從這9人中隨機抽取三人,設三人的成績之和為,求

3)從該班得分大于7分的9人中選3人即甲,乙,丙組隊參加學校內(nèi)的“數(shù)學限時解題挑戰(zhàn)賽”.規(guī)則為:每隊首先派一名隊員參加挑戰(zhàn)賽,在限定的時間,若該生解決問題,即團隊挑戰(zhàn)成功,結(jié)束挑戰(zhàn);若解決問題失敗,則派另外一名隊員上去挑戰(zhàn),直至派完隊員為止.通過訓練,已知甲,乙,丙通過挑戰(zhàn)賽的概率分別是,,,問以怎樣的先后順序派出隊員,可使得派出隊員數(shù)目的均值達到最?(只需寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的棱長均為6,其內(nèi)有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.

查看答案和解析>>

同步練習冊答案