【題目】已知,是橢圓的左右兩個(gè)焦點(diǎn),過(guò)的直線與交于,兩點(diǎn)(在第一象限),的周長(zhǎng)為8的離心率為.

1)求的方程;

2)設(shè)的左右頂點(diǎn),直線的斜率為的斜率為,求的取值范圍.

【答案】(1)(2)

【解析】

1)根據(jù)橢圓定義可知,周長(zhǎng)為,結(jié)合已知求出,即可求解;

2)若直線斜率不存在時(shí),求出坐標(biāo),以及值,并有 ;當(dāng)直線斜率存在時(shí),設(shè)出方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理,得出兩點(diǎn)坐標(biāo)關(guān)系,求出,再求出取值范圍,將表示為的二次函數(shù),轉(zhuǎn)化求二次函數(shù)的取值范圍,即可求得結(jié)論.

解:(1)由條件得解得,

所以的方程為.

2)由(1)得,,

當(dāng)直線的斜率不存在時(shí),,

,.

當(dāng)直線的斜率存在時(shí),此時(shí)直線的斜率不為0,設(shè)直線的方程為

設(shè),,由

,

,

..

因?yàn)辄c(diǎn)在第一象限,所以,(為橢圓的上頂點(diǎn))

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列結(jié)論:

①下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的分別為8,12,則輸出的;

②若用樣本數(shù)據(jù)0,-1,23來(lái)估計(jì)總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計(jì)值為

③命題:,則的否命題是,則;

④已知正數(shù)滿(mǎn)足,則的最大值是

⑤已知函數(shù)滿(mǎn)足,,且當(dāng)時(shí),.在區(qū)間為增函數(shù).

其中結(jié)論正確的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求證:存在唯一的實(shí)數(shù),使得直線與曲線相切;

2)若,,求證:.

(注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒中有形狀、大小、質(zhì)地完全相同的5張撲克牌,其中3張紅桃,1張黑桃,1張梅花.現(xiàn)從盒中一次性隨機(jī)抽出2張撲克牌,則這2張撲克牌花色不同的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2.

1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;

2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面平面,.

(1)求證:平面平面

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種類(lèi)型的題目,此類(lèi)題目有六個(gè)選項(xiàng)A、BC、DE、F,其中有三個(gè)正確選項(xiàng),滿(mǎn)分6分,賦分標(biāo)準(zhǔn)為每選對(duì)一個(gè)得2分,每選錯(cuò)一個(gè)扣3分,最低得分為0”.在某校的一次測(cè)試中出現(xiàn)了這種類(lèi)型的題目,已知此題的正確答案是ACD,假定考生作答的答案中選項(xiàng)的個(gè)數(shù)不超過(guò)三個(gè).

1)若甲同學(xué)只能判斷選項(xiàng)AD是正確的,現(xiàn)在他有兩種選擇:一種是將AD作為答案,另一種是在BC、EF這四個(gè)選項(xiàng)中任選一個(gè)與A、D組成一個(gè)含三個(gè)選項(xiàng)的答案.則甲同學(xué)的最佳選擇是哪一種?請(qǐng)說(shuō)明理由;

2)若乙同學(xué)無(wú)法判斷所有選項(xiàng),他決定在6個(gè)選項(xiàng)中任選3個(gè)作為答案:

i)設(shè)乙同學(xué)此題得分為分,求的分布列;

ii)已知有20名和乙同學(xué)情況相同的同學(xué),且這20名考生答案互不相同,他們此題的平均得分為a分,現(xiàn)從這20名考生中任選3名考生,計(jì)算得到這3人平均得分為b分,試求a的值及的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,的中點(diǎn),平行于,平行于面.

(1)求的長(zhǎng);

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1是菱形,且CACB1

1)證明:面CBA1⊥面CB1A;

2)若∠BAA160°,A1CBCBA1,求二面角CA1B1C1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案