18.已知A是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點,F(xiàn)1,F(xiàn)2分別為左、右焦點,P為雙曲線上一點,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,則雙曲線的標準方程為( 。
A.x2-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{4}$=1

分析 由題意,PG=2GO,GA∥PF1,可得2OA=AF1,求得c=3a,再由條件和雙曲線的定義,可得a,b,即可求出雙曲線的方程.

解答 解:由題意,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,
可得PG=2GO,GA∥PF1,
∴2OA=AF1
∴2a=c-a,∴c=3a,
∴b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{2}$a,
|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,
可得|$\overrightarrow{P{F}_{1}}$|=3×$\frac{5}{3}$=5,
|$\overrightarrow{P{F}_{2}}$|=8-5=3,
可得2a=|PF1-PF2|=|5-3|=2,
解得a=1,b=2$\sqrt{2}$,
則雙曲線的方程為x2-$\frac{{y}^{2}}{8}$=1.
故選:A.

點評 本題考查雙曲線的標準方程的求法,注意運用三角形的重心的性質和雙曲線的定義,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=2sin({ωx+\frac{π}{3}}),({ω<0})$的最小正周期為π,求函數(shù)f(x)的單調遞增區(qū)間和函數(shù)取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的圖象上有一點列Pn(xn,yn)(n∈N*),點Pn在x軸上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求證:{xn+1}是等比數(shù)列,并求出數(shù)列{xn}的通項公式;
(2)對任意的正整數(shù)n,當m∈[-1,1]時,不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求實數(shù)t的取值范圍;
(3)設四邊形PnQnQn+1Pn+1的表面積是Sn,求證:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設x,y∈R+且xy-(x+y)=1,則(  )
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知三角形ABC中,角A,B,C成等差數(shù)列,且$2sinCcosA+\sqrt{3}sinA=2sinB,AD$為角A的內角平分線,$AD=\sqrt{6}$.
(1)求三角形內角C的大;
(2)求△ABC面積的S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價x和銷售量y之間的一組數(shù)據(jù)如表所示:
月份i789101112
銷售單價xi(元)99.51010.5118
銷售量yi(件)111086514
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖直三棱柱ABC-A1B1C1 中AC=2AA1,AC⊥BC,D、E 分別為A1C1、AB 的中點.求證:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.五面體ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求證:G是DE中點;
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若存在兩個正實數(shù)x,y使得等式3x+a(y-2ex)(lny-lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是(  )
A.(-∞,0)B.(0,$\frac{3}{e}$]C.[$\frac{3}{e}$,+∞)D.(-∞,0)∪[$\frac{3}{e}$,+∞)

查看答案和解析>>

同步練習冊答案