8.已知函數(shù)$f(x)=2sin(ωx+\frac{π}{6})-1(ω>0)$的圖象向右平移$\frac{2π}{3}$個單位后與原圖象重合,則ω的最小值是( 。
A.3B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{2}{3}$

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性,求得ω的最小值.

解答 解:ω>0,函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)-1的圖象向右平移$\frac{2π}{3}$個單位后,
所得圖象對應(yīng)的函數(shù)解析式為y=2sin[ω(x-$\frac{2π}{3}$)+$\frac{π}{6}$]-1=2sin(ωx+$\frac{π}{6}$-$\frac{2ωπ}{3}$)-1,
再根據(jù)所得圖象與原圖象重合,可得$\frac{2ωπ}{3}$=2kπ,k∈Z,即ω=3k,則ω的最小值為3.
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,長方體ABCD-EFGH,底面是邊長為2$\sqrt{3}$的正方形,DH=2,P為AH中點.
(1)求四棱錐F-ABCD的體積;
(2)若點M在正方形ABCD內(nèi)(包括邊界),且三棱錐P-AMB體積是四棱錐F-ABCD體積的$\frac{1}{8}$,請指出滿足要求的點M的軌跡,并在圖中畫出軌跡圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a^{-1}})^{3}}{0.{1}^{-2}({a}^{3}^{-3})^{\frac{1}{2}}}$(a>0,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中正確的個數(shù)是( 。
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α;
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,連接橢圓C的四個頂點所形成的四邊形面積為4$\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)如圖,過橢圓C的下頂點A作兩條互相垂直的直線,分別交橢圓C于點M,N,設(shè)直線AM的斜率為k,直線l:y=$\frac{{k}^{2}-1}{k}$x分別與直線AM,AN交于點P,Q,記△AMN,△APQ的面積分別為S1,S2,是否存在直線l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f′(x)是偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(x)在區(qū)間(0,+∞)上的唯一零點為2,并且當(dāng)x∈(-1,1)時,xf′(x)+f(x)<0.則使得f(x)<0成立的x的取值范圍是( 。
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-1,1)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直三棱錐ABC-A1B1C1中,AA1=AB=AC=2,E,F(xiàn)分別是CC1,BC的中點,AE⊥A1B1,D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)是否存在一點D,使得平面DEF與平面ABC夾角的余弦值為$\frac{\sqrt{14}}{14}$?若存在,說明點D的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知傾斜角為θ的直線l與直線m:x-2y+3=0垂直,則sin2θ=( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=\sqrt{3}$,$|\overrightarrow a-\overrightarrow b|=1$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案