【題目】如圖,在底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為的正四棱柱中,是側(cè)棱上的一點(diǎn),.

1)若,求異面直線所成角的余弦;

2)是否存在實(shí)數(shù),使直線與平面所成角的正弦值是?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) (2)存在,

【解析】

1)采用建系法進(jìn)行求解;

2)假設(shè)存在實(shí)數(shù),使得直線與平面所成角的正弦值是,則用向量法表示出,再求得平面的法向量為,結(jié)合夾角公式即可求得;

解:(1)建立空間直角坐標(biāo)系,則,,,.

所以.

,即異面直線所成角的余弦是.

2)假設(shè)存在實(shí)數(shù),使直線與平面所成的角的正弦值等于,則

,,.

設(shè)平面的法向量為

則由,得,取,得平面的法向量為.

由直線與平面所成的角的正弦值等于,得

,解得,因?yàn)?/span>,所以滿足條件,

所以當(dāng)時(shí),直線與平面所成的角的正弦值等于.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿足條件:對(duì)任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對(duì)稱,則稱h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紋樣是中國(guó)藝術(shù)寶庫(kù)的瑰寶,火紋是常見的一種傳統(tǒng)紋樣,為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲2000個(gè)點(diǎn),己知恰有800個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】法國(guó)數(shù)學(xué)家布豐提出一種計(jì)算圓周率的方法——隨機(jī)投針?lè),受其啟發(fā),我們?cè)O(shè)計(jì)如下實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)200名同學(xué)每人隨機(jī)寫下一個(gè)橫、縱坐標(biāo)都小于1的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)的平方和小于1的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.已知某同學(xué)一次試驗(yàn)統(tǒng)計(jì)出,則其試驗(yàn)估計(jì)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線過(guò)點(diǎn),且與拋物線交于、兩點(diǎn),

1)求的取值范圍;

2)若,點(diǎn)的坐標(biāo)為,直線與拋物線的另一個(gè)交點(diǎn)為,直線與拋物線的另一個(gè)交點(diǎn)為,直線軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,過(guò)(M不過(guò)橢圓的頂點(diǎn)和中心)且斜率為k直線l交橢圓于兩點(diǎn),與y軸交于點(diǎn)N,且.

(1)若直線l過(guò)點(diǎn),求的周長(zhǎng);

(2)若直線l過(guò)點(diǎn),求線段的中點(diǎn)R的軌跡方程;

(3)求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】業(yè)界稱中國(guó)芯迎來(lái)發(fā)展和投資元年,某芯片企業(yè)準(zhǔn)備研發(fā)一款產(chǎn)品,研發(fā)啟動(dòng)時(shí)投入資金為AA為常數(shù))元,之后每年會(huì)投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計(jì)算發(fā)現(xiàn)當(dāng)時(shí),近似地滿足,其中,為常數(shù),.已知3年后總投入資金為研發(fā)啟動(dòng)是投入資金的3倍,問(wèn):

1)研發(fā)啟動(dòng)多少年后,總投入資金是研發(fā)啟動(dòng)時(shí)投入資金的8倍;

2)研發(fā)啟動(dòng)后第幾年投入的資金最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P到圓(x+22+y2=1的切線長(zhǎng)與到y軸的距離之比為tt0t≠1);

1)求動(dòng)點(diǎn)P的軌跡C的方程;

2)當(dāng)時(shí),將軌跡C的圖形沿著x軸向左移動(dòng)1個(gè)單位,得到曲線G,過(guò)曲線G上一點(diǎn)Q作兩條漸近線的垂線,垂足分別是P1P2,求的值;

3)設(shè)曲線C的兩焦點(diǎn)為F1F2,求t的取值范圍,使得曲線C上不存在點(diǎn)Q,使∠F1QF2=θ0θπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)證明:,都有;

2)若函數(shù)有且只有一個(gè)零點(diǎn),求的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案